Design and development of multi-band multi-generation compatible MIMO antenna for wireless devices

Main Article Content

Arumita Biswas
Vibha Rani Gupta

Abstract

A planar dual-element multi-generation compatible MIMO antenna is presented in this paper. The radiating antenna elements are designed to resonate over two frequency ranges: 1.41 GHz – 2.11 GHz and 3.6 GHz – 3.8 GHz, with (S11/S22) reference considered as -10 dB,covering frequencies allotted for L1 GPS, 2G standards (GSM-1800 and GSM-1900), 3G standard (UMTS), LTE (working on TDD and FDD techniques) and 5G New Radio. The designed antenna is optimized using IE3D simulation software and fabricated on  FR4 substrate having relative permittivity of 4.4, loss tangent of 0.02 and thickness of 1.6 mm.  A three step isolation improvement and impedance bandwidth enhancement technique is presented to reduce the mutual coupling and cover the desired frequency range. Antenna characteristics in terms of the reflection coefficient, mutual coupling, radiation pattern and gain are measured and show good agreement with the simulated results. Diversity performance is evaluated in terms of the envelop correlation coefficient. It is found to be less than 0.12 and 0.06 in the first and second bands of frequencies, respectively. The planar structure and capability to support several frequencies of multiple generations make the proposed MIMO antenna a good candidate for integration with future wireless devices.

Article Details

How to Cite
Biswas, A., & Gupta, V. R. (2020). Design and development of multi-band multi-generation compatible MIMO antenna for wireless devices. Engineering and Applied Science Research, 47(1), 77–86. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/194562
Section
ORIGINAL RESEARCH

References

Vora LJ. Evolution of mobile generation technology: 1G to 5G and review of upcoming wireless technology 5G. Int J Mod Trends Eng Res. 2015; 2(10):281-90.

Biswas A, Chowdhury M. Wireless communication: theory and applications. Cambridge: Cambridge University Press; 2017.

Agarwal T, Srivastava S. Compact MIMO antenna for multiband mobile applications. J Microw Optoelectron Electromagn Appl. 2017;16(2):542-52.

Dioum I, Diallo A, Farassi AM, Luxey C. A novel compact dual-band LTE antenna system for MIMO operation. IEEE Trans Antenn Propag. 2014; 62(4):2291-6.

Alsaif H, Usman M, Chugtai MT, Nasir J. Cross polarized 2x2 UWB-MIMO antenna system for 5G wireless applications. Prog Electromagn Res M. 2018; 76:157-66.

Zhang W, Weng Z, Wang L. Design of a dual-band MIMO antenna for 5G smartphone application. IEEE International Workshop on Antenna Technology; 2018 Mar 5-7; Nanjing, China. USA: IEEE; 2018. p. 1-3.

3rd Generation Partnership Project. 5G, NR, User Equipment (UE) radio transmission and reception, Part1 Range 1 Standalone. TS 38.101-1 version 15.2.0 Release 15, July 2018.

3rd Generation Partnership Project. 5G, NR, Base Station (BS) radio transmission and reception. TS 38.104 version 15.3.0 Release 15, October 2018.

Ban YL, Li C, Sim CYD, Wu G, Wong KL. 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access. 2016;4:2981-8.

Votis C, Tatsis G, Kostarakis P. Envelope correlation parameter measurements in a MIMO antenna array configuration. Int J Comm Netw Syst Sci. 2010; 3(4):350-4.

Janaswamy R. Effect of element mutual coupling on the capacity of fixed length linear arrays. IEEE Antenn Wireless Propag Lett. 2002;1:157-60.

Zhang S, Lau BK, Tan Y, Ying Z, He S. Mutual coupling reduction of two PIFAs with a T-Shape slot impedance transformer for MIMO mobile terminals. IEEE Trans Antenn Propag. 2012;60(3):1521-31.

Li Y, Sim CYD, Luo Y, Yang G. High-isolation 3.5-GHz eight-antenna MIMO array using balanced open slot antenna element for 5G Smartphones. IEEE Trans Antenn Propag. 2019;67(6):3820-30.

Jiang W, Liu B, Cui Y, Hu W. High-isolation eight-element MIMO array for 5G Smartphone applications. IEEE Access. 2019;7:34104-12.

Marzudi WNNW, Abidin ZZ, Muji SZ, Yue M, Alhameed RAA. Minimization of mutual coupling using neutralization line technique for 2.4 GHz wireless applications. Int J Digit Inform Wireless Comm. 2014;4(3):292-8.

Chen WS, Chang YL. Small size 5G C-band/WLAN 5.2/5.8GHz MIMO antenna for laptop computer applications. IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM); 2018 Aug 29-31; Nagoya, Japan. USA: IEEE; 2018. p. 1-2.

Bilal M, Saleem R, Abbasi HH, Shafique MF, Brown AK. An FSS-based nonplanar quad-element UWB-MIMO antenna system. IEEE Antenn Wireless Propag Lett. 2017;16:987-90.

Ding CF, Zhang XY, Xue CD, Sim CYD. Novel pattern-diversity-based decoupling method and its application to multi element MIMO antenna. IEEE Trans Antenn Propag. 2018;66(10):4976-85.

Liu H, Li R, Pan Y, Quan X, Yang L, Zheng L. A multi-broadband planar antenna for GSM/UMTS/LTE and WLAN/WiMAX handsets. IEEE Trans Antenn Propag. 2014;62(5):2856-60.

Chen H, Zhao A. LTE antenna design for mobile phone with metal frame. IEEE Antenn Wireless Propag Lett. 2016;15:1462-5.

Wang Y, Du Z. Wideband monopole antenna with less non ground portion for octa-band WWAN/LTE mobile phones. IEEE Trans Antenn Propag. 2016;64(1):383-8.

Biswas A, Gupta VR. A multiband antenna design for Long Term Evolution (LTE) application. International Conference on Signal Processing and Communication Engineering Systems; 2015 Jan 2-3; Guntur, India. USA: IEEE; 2015. p. 210-4.

Khalilabadi AJ, Zadelgol A. Multiband antenna for wireless applications including GSM/UMTS/LTE and 5G bands. International Applied Computational Electromagnetics Society Symposium (ACES); 2018 Mar 25-29; Denver, USA. USA: IEEE; 2018. p. 1-2.

Huang D, Du Z. Eight-band antenna with a small ground clearance for LTE metal-frame mobile phone applications. IEEE Antenn Wireless Propag Lett. 2018;17(1):34-7.

Biswas A, Gupta VR. Novel compact antenna for Smartphone covering fifteen LTE bands. IEEE International Conference on Electrical, Communication, Electronics, Instrumentation and Computing; 2019 Jan 30-31; Kanchipuram, India.

Toktas A, Akdagli A. Wideband MIMO antenna with enhanced isolation for LTE, WiMAX and WLAN mobile handsets. Electron Lett. 2014;50(10):723-4.

Yang Y, Chu Q, Mao C. Multiband MIMO antenna for GSM, DCS and LTE indoor applications. IEEE Antenn Wireless Propag Lett. 2016;15:1573-6.

Zhang S, Ying Z, Xiong J, He S. Ultrawideband MIMO/Diversity antennas with tree-like structure to enhance wideband isolation. IEEE Antenn Wireless Propag Lett. 2009;8:1279-82.

Dong J, Yu. X, Deng L. A decoupled multiband dual-antenna system for WWAN/LTE smartphone applications. IEEE Antenn Wireless Propag Lett. 2017;16:1528-32.

Fakih M, Diallo A, Thuc PL, Staraj R, Rachid E, Murad O. A dual band PIFA for MIMO half-duplex 4G and future full-duplex 5G communication for mobile handsets. IEEE Conference on Antenna Measurements & Applications (CAMA); 2018 Sep 3-6; Vasteras, Sweden. USA: IEEE; 2018. p. 1-4.

Ding Z, Yao T, Liu X, Wang X, Liu Z. An eight port dual-band antenna array for 5G smartphone applications. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC); 2018 Jul 21-24; Xuzhou, China. USA: IEEE; 2018. p. 1-2.

Kumari T, Das G, Sharma A, Gangwar RK. Design approach for dual element hybrid MIMO antenna arrangement for wideband applications. Int. J. RF Microw. Comput.-aided Eng. 2018;29:1-10.

Wang S, Du ZW. Decoupled dual-antenna system using crossed neutralization lines for LTE/WWAN Smartphone applications. IEEE Antenn Wireless Propag Lett, 2015; 14:523-526.

Sharawi MS. Printed MIMO antenna systems: performance metrics, implementations and challenges. Forum for Electromagnetic Research Methods and Application Technologies. 2014;1:1-11.