Effect of Operating Parameters on Photocatalytic Treatment of Synthetic Wastewater Using CaTiO3

Main Article Content

Shilpa Mishra
Rekha Dom
Baranidharan Sundaram

Abstract

Photocatalysis is thought to be a long-term, environmentally friendly, economically feasible, and promising technique for treating wastewater. The development of semiconductor nanoparticles has generated a great deal of interest in the treatment of wastewater. To break down complex contaminants found in wastewater into simpler compounds, including H2O and CO2, several UV/visible light excitable nanomaterials have been explored as photocatalysts. Their effectiveness can be managed by adjusting several reaction-related parameters like the intensity of light, irradiance time, pH, catalyst dose, temperature, doping, etc. The performance of the photocatalyst in the photodegradation of contaminants is greatly affected by these parameters. The main goal of this study is to find the best operational parameters and their impact on the photocatalytic treatment of synthetic waste-water using calcium titanate (CaTiO3) nanoparticles. For this purpose, sol-gel synthesized CaTiO3 with a band gap of 3.57 eV was used. The size of the synthesized nanoparticles is smaller than 47.62 nm. The results of photocatalytic treatment of synthetic wastewater demonstrate that CaTiO3 exhibits its best photocatalytic performance at 33 W UV light, pH 6.0, and 3.33 g L-1 CaTiO3 dose with 8 hours of irradiation time.  With chemical oxygen demand (COD) concentrations varying from 700 to 40000 mg L-1 at the initial stages, the percentage of COD removal under these conditions was 100% to 77%.

Article Details

How to Cite
Mishra, S., Dom, R., & Sundaram, B. (2024). Effect of Operating Parameters on Photocatalytic Treatment of Synthetic Wastewater Using CaTiO3. Applied Environmental Research, 46(3). https://doi.org/10.35762/AER.2024031
Section
Original Article

References

Mishra and Sundaram, (2022). Efficacy of nanoparticles as photocatalyst in leachate treatment. Nanotechnology for Environmental Engineering. 7. 1-20. 10.1007/s41204-021-00209-x.

Lee, Jiseon & Perera, Duminda & Glickman, Talia & Taing, Lina. (2020). Water-related disasters and their health impacts: A global review. Progress in Disaster Science. 8. 100123. 10.1016/j.pdisas.2020.100123.

Grégorio, Crini & Lichtfouse, Eric. (2018). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters. 17. 1-11. 10.1007/s10311-018-0785-9.

Mahmoud, Alaa El Din & Fawzy, Manal. (2016). Bio-based Methods for Wastewater Treatment: Green Sorbents. 10.1007/978-3-319-40148-5_7.

Abbas, Abdulhussain & Guo, Jin-Song & Ping, Liu & Ya, Pan & Al-Rekabi, Wisam. (2009). Review on Landfill Leachate Treatments. American Journal of Applied Sciences. 6. 10.3844/ajas.2009.672.684.

Hussain, Ahmed & Kumari, Rekha & Ghosh Sachan, Shashwati & Sachan, Ashish. (2021). Biological wastewater treatment technology: Advancement and drawbacks. 10.1016/B978-0-12-822503-5.00002-3.

Nur R & che radzi, Nurhaslina & Hamid, Ku. (2014). Enhancement of biological approach and potential of Lactobacillus delbrueckii in decolorization of textile wastewater - A review. IOSR Journal of Environmental Science, Toxicology and Food Technology. 8. 06-10. 10.9790/2402-081120610.

Othman, N. H., Alias, N. H., Fuzil, N. S., Marpani, F., Shahruddin, M. Z., Chew, C. M., David Ng, K. M., Lau, W. J., & Ismail, A. F. (2021). A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes, 12(1), 30. https://doi.org/10.3390/membranes12010030

Shilpa Mishra, Muthukumar S and Baranidharan S (2022). Advanced Oxidation Process for Leachate Treatment: A Critical Review. An Innovative Approach of Advanced Oxidation Processes for Wastewater Treatment, Maulin P Shah, Sweta Parimita Bera, Günay Yildiz Tore (Eds.) ISBN 9780367762117, CRC Press https://doi.org/10.1201/9781003165958

Shokri, Aref & Fard, Mahdi. (2022). A critical review in the features and application of photocatalysts in wastewater treatment. Chemical Papers. 76. 10.1007/s11696-022-02256-3.

Chanu, L Anju & Singh, W Joychandra & Singh, K. & Nomita Devi, Kongkham. (2018). Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using Manganese doped ZnO nanoparticles. Results in Physics. 12. 1230-1237. 10.1016/j.rinp.2018.12.089.

Gusain, Rashi & Kumar, Neeraj & Sinha Ray, Suprakas. (2020). Factors Influencing the Photocatalytic Activity of Photocatalysts in Wastewater Treatment. 10.1002/9781119631422.ch8.

Kulkarni, Dr-Sunil & Zope, Gaurav & Goswami, Ajaygiri & Meshram, Pawan. (2023). Factors affecting photocatalytic degradation of Reactive Green-19 with CdO-TiO2 nanocomposite. 10.22104/aet.2021.5140.1395.

Mohit Kumar, Ganesh Swain, Ravi Kumar Sonwani, Ram Sharan Singh, Ankur Verma, Birendra Nath Rai (2021).2 - Effect of operating parameters on photocatalytic degradation of dyes by using graphitic carbon nitride, Editor(s): Maulin Shah, Sushma Dave, Jayashankar Das, Photocatalytic Degradation of Dyes, Elsevier, Pages 23-43, ISBN 9780128238769,https://doi.org/10.1016/B978-0-12-823876-9.00026-3.

Bona Deng, Pengxiang Si, Lukas Bauman, Jun Luo, Mingjun Rao, Zhiwei Peng, Tao Jiang, Guanghui Li, Boxin Zhao. (2020).Photocatalytic activity of CaTiO3 derived from roasting process of bauxite residue.Journal of Cleaner Production,.Volume 244,118598,ISSN 0959-6526,https://doi.org/10.1016/j.jclepro.2019.118598.

Ferrari-Lima, Ana & Germiniano, Talitha & Savoia, Jaqueline & ganascim marques, Rubiane & Ribeiro, Valquiria & Ueda, Ana. (2019). CaTiO3 Perovskite in the Photocatalysis of Textile Wastewater. Ambiente e Agua - An Interdisciplinary Journal of Applied Science. 14. 1. 10.4136/ambi-agua.2336.

Han, C., Liu, J., Yang, W., Wu, Q., Yang, H., & Xue, X. (2016). Photocatalytic activity of CaTiO3 synthesized by solid state, sol–gel and hydrothermal methods. Journal of Sol-Gel Science and Technology, 81(3), 806–813. 10.1007/s10971-016-4261-3

Manjusha Passi, Bonamali Pal. (2021). A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technology, 388, 274-304, ISSN 0032-5910, https://doi.org/10.1016/j.powtec.2021.04.056.

Azhar, Abdul & Halim, Azhar & Nazurah, Noor & Abidin, Zainal & Awang, Normah & Ithnin, Anuar & Othman, Mohd & Bin A Wahab, Muhammad. (2011). Ammonia and COD removal from synthetic leachate using rice husk composite adsorbent. Journal of Urban and Environmental Engineering. 5. 24-3124. 10.4090/juee.2011.v5n1.024031.

Sundaram, Baranidharan & Kumar, Arun. (2016). Long-Term Effect of Metal Oxide Nanoparticles on Activated Sludge. Water Science & Technology. 75. 10.2166/wst.2016.541.

Zhou, Lijie & Zhuang, Wei-Qin & Wang, Xin & Yu, Ke & Yang, Shufang & Xia, Siqing. (2017). New insights into comparison between synthetic and practical municipal wastewater in cake layer characteristic analysis of membrane bioreactor. Bioresource Technology. 244. 10.1016/j.biortech.2017.08.069.

Amakiri, Kingsley & Angelis-Dimakis, Athanasios & Ramirez-Canon, Anyela. (2021). Recent advances, influencing factors, and future research prospects using photocatalytic process for produced water treatment. Water Science and Technology. 85. 10.2166/wst.2021.641.

Gnanaprakasam, Arul & Sivakumar, V.M. & Thirumarimurugan, M.. (2015). Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian Journal of Materials Science. 2015. 1-16. 10.1155/2015/601827.

Orawan Rojviroon, Thammasak Rojviroon, Sanya Sirivithayapakorn (2015) Removal of Color and Chemical Oxygen Demand from Landfill Leachate by Photocatalytic Process with AC/TiO2. Energy Procedia 79: 536-541 ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2015.11.530

Sama Azadi, Ayoub Karimi-Jashni, Sirus Javadpour, Hamid Amiri (2020) Photocatalytic treatment of landfill leachate using cascade photoreactor with immobilized W-C-codoped TiO2 nanoparticles. Journal of Water Process Engineering 36 101307 ISSN 2214-7144. https://doi.org/10.1016/j.jwpe.2020.101307

Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. Journal of Photochemistry and Photobiology A: Chemistry, 168(1-2), 39–45. doi:10.1016/j.jphotochem.2004.05.

Mondal Kunal, Sharma Ashutosh (2014) Photocatalytic Oxidation of Pollutant Dyes in Wastewater by TiO2 and ZnO nano-materials–A Mini-review. Nanoscience & Technology for Mankind 5:36-72 The National Academy of Sciences India (NASI) Ashok Misra, Jayesh R. Bellare

Kumar A, Pandey G. (2017) A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Sci & Eng Int J. 1(3):106-114. 10.15406/mseij.2017.01.00018

Sujatha, Gurudev & S, Shanthakumar & Chiampo, Fulvia. (2020). UV Light-Irradiated Photocatalytic Degradation of Coffee Processing Wastewater Using TiO2 as a Catalyst. Environments. 7. 47. 10.3390/environments7060047.

Al-Nuaim, M.A., Alwasiti, A.A. & Shnain, Z.Y. (2023). The photocatalytic process in the treatment of polluted water. Chem. Pap. 77, 677–701. https://doi.org/10.1007/s11696-022-02468-7

Sinar Mashuri, S. I., Ibrahim, M. L., Kasim, M. F., Mastuli, M. S., Rashid, U., Abdullah, A. H., … Yun Hin, T.-Y. (2020). Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts, 10(11), 1260. doi:10.3390/catal10111260

Hussein, Falah. (2012). Photochemical Treatments of Textile Industries Wastewater. Asian Journal of Chemistry. 24. 5427-5434.

Reza, K. M., Kurny, A., & Gulshan, F. (2015). Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Applied Water Science, 7(4), 1569–1578. doi:10.1007/s13201-015-0367-y

Azadi, S., Karimi-Jashni, A., Javadpour, S., & Mahmoudian-Boroujerd, L. (2020). Photocatalytic landfill leachate treatment using P-type TiO2 nanoparticles under visible light irradiation. Environment, Development and Sustainability. doi:10.1007/s10668-020-00861-4 j

Carneiro, P. A., et al. (2010). Mutagenic activity removal of selected disperse dye by photoeletrocatalytic treatment. Journal of Applied Electrochemistry, 40(3), 485–492.

Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1–12.

Anpo, M., & Kamat, P. V. (Eds.). (2010). Environmentally benign photocatalysts: Applications of titanium oxide-based materials. New York: Springer.

Andrade, Marta A.; Mestre, Ana S.; Carmona, Rocío J.; Carvalho, A.P.; Ania, Conchi O. (2015). Effect of the irradiation wavelength on the performance of nanoporous carbon as an additive to TiO2. Applied Catalysis A: General, 507, 91–98. doi:10.1016/j.apcata.2015.09.036

Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Research Letters, 12(1). doi:10.1186/s11671-017-1904-4

Saikumari, N., Dev, S.M. & Dev, S.A. (2021) Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles. Sci Rep 11, 1734. https://doi.org/10.1038/s41598-021-80997-z

Kim, Min & Kang, Jeong & Lee, Ji & Kim, Kang Seok & Kim, Kwang & Cho, Min & Lee, Seung Geol. (2021). Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO 2 Nanoparticles. ACS Omega. XXXX. 10.1021/acsomega.1c00043.

Singh, Gurpinder & Kaur Ubhi, Manpreet & Bedi, Kiran & Singla, Chetan. (2023). A Review on Impacting Parameters for Photocatalytic Degradation of Organic Effluents by Ferrites and Their Nanocomposites. Processes. 11. 1727. 10.3390/pr11061727.

Tahir, M. B., Sohaib, M., Sagir, M., Rafique, M. (2020) Role of Nanotechnology in Photocatalysis. Reference Module in Materials Science and Materials Engineering. 10.1016/b978-0-12-815732-9.00006-1

Subramaniam, M. N., Goh, P.-S., Lau, W.-J., Ng, B.-C., & Ismail, A. F. (2019). Development of nanomaterial-based photocatalytic membrane for organic pollutants removal. Advanced Nanomaterials for Membrane Synthesis and Its Applications, 45–67. doi:10.1016/b978-0-12-814503-6.00003-3

Jain, A., & Vaya, D. (2017). Photocatalytic activity of TiO2 nanomaterial. Journal of the Chilean Chemical Society, 62(4), 3683–3690. doi:10.4067/s0717-97072017000403683

Galstyan, V., Comini, E., Faglia, G., & Sberveglieri, G. (2013). TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties. Sensors (Basel, Switzerland), 13, 14813 – 14838.

Suzuki, Tomiko & Kitahara, Gaku & Arai, Takeo & Matsuoka, Yoriko & Morikawa, Takeshi. (2014). Nitrogen and transition-metal codoped titania nanotube arrays for visible-light-sensitive photoelectrochemical water oxidation. Chemical communications (Cambridge, England). 50. 10.1039/c4cc02571g.

Huang, K.C., & Chien, S.H. (2013). Improved visible-light-driven photocatalytic activity of rutile/titania-nanotube composites prepared by microwave-assisted hydrothermal process. Applied Catalysis B-environmental, 140, 283-288.

Li, X., Zhao, J., & Yang, J. (2013). Semihydrogenated BN Sheet: A Promising Visible-light Driven Photocatalyst for Water Splitting. Scientific Reports, 3.

Bantawal, H., Shenoy, U. S., & Bhat, D. K. (2021). Vanadium doped CaTiO3 cuboids: role of vanadium in improving the photocatalytic activity. Nanoscale advances, 3(18), 5301–5311. https://doi.org/10.1039/d1na00468a

Saggioro EM, Oliveira AS, Pavesi T, Maia CG, Ferreira LFV, Moreira JC (2011) Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16:10370–10386

The Gulshan F, Sayaka Y, Yoshikazu K, Toshihiro I, Akira N, Kiyoshi O (2010) Photodecomposition of methylene blue by iron-oxides in an oxalate solution. J Water Res 44:2876–2884

Schneider, J. T., Firak, D. S., Ribeiro, R. R., & Peralta-Zamora, P. G. (2020). Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Physical Chemistry Chemical Physics. doi:10.1039/d0cp02411b

Zheng, P., Pan, Z., Li, H., Bai, B., & Guan, W. (2015). Effect of different types of scavengers on the photocatalytic removal of copper and cyanide in the presence of TiO2@yeast hybrids. Journal of Materials Science: Materials in Electronics, 26(9), 6399–6410. doi:10.1007/s10854-015-3229-3

Álvarez-Merino, Miguel Ángel & Ruidiaz-Martínez, Miller & Rivera-Utrilla, J. & Sánchez-Polo, M. & Lopez-Ramon, M.Victoria. (2021). Effect of operational parameters on photocatalytic degradation of ethylparaben using rGO/TiO2 composite under UV radiation. Environmental Research. 200. 111750. 10.1016/j.envres.2021.111750.