Unraveling the Effects of Arbuscular Mycorrhizal Fungi on Plant Growth, Nutrient Content, and Heavy Metal Accumulation in the Contaminated Soil: A Meta-analysis

Main Article Content

Bela Putra
Anuraga Jayanegara
Irwan Susanto

Abstract

This study evaluated the effects of arbuscular mycorrhizal fungi (AMF) on plant growth, nutrient uptake, and heavy metal accumulation on polluted land using a meta-analysis approach. Data from 33 relevant studies were selected based on inclusion criteria, specifically articles in English, observational research, and investigating the role of AMF in plant growth and productivity on polluted land. The results showed that plants inoculated with AMF experienced significant accumulation of heavy metals in roots, such as Pb (p<0.01), Ni (p<0.01), Cr (p<0.01), Mn (p<0.05), Fe (p<0.05), and As (p<0.05). The AMF significantly reduced the accumulation of heavy metals such as Cr, Ni, Fe, and Cu on the upper part of fodder forage (p<0.01). Forage growth was also enhanced due to AMF. The AMF greatly increased the fresh weight, length, and phosphorus (P) content of fodder forage roots (p<0.01). It also increased the plant's biomass, fresh weight, dry weight, height, nitrogen (N), phosphorus (P), and potassium (K) contents (p<0.01). In conclusion, AMF is important in increasing plant growth, nutrient uptake and reducing heavy metal accumulation in forage on polluted land.

Article Details

How to Cite
Putra, B. ., Jayanegara, A. ., & Susanto, I. . (2024). Unraveling the Effects of Arbuscular Mycorrhizal Fungi on Plant Growth, Nutrient Content, and Heavy Metal Accumulation in the Contaminated Soil: A Meta-analysis. Applied Environmental Research, 46(1). https://doi.org/10.35762/AER.2024006
Section
Review Article

References

Akhtar S, Khan ZI, Ahmad K, Nadeem M, Ejaz A, Hussain MI, Ashraf MA. 2022. Assessment of lead toxicity in diverse irrigation regimes and potential health implications of agriculturally grown crops in Pakistan. Agric Water Manag. 271.

Benaffari W, Boutasknit A, Anli M, Ait-El-mokhtar M, Ait-Rahou Y, Ben-Laouane R, Ahmed H Ben, Mitsui T, Baslam M, Meddich A. 2022. The Native Arbuscular Mycorrhizal Fungi and Vermicompost-Based Organic Amendments Enhance Soil Fertility, Growth Performance, and the Drought Stress Tolerance of Quinoa. Plants. 11(3).

Bini C, Wahsha M, Fontana S, Maleci L. 2012. Effects of heavy metals on morphological characteristics of Taraxacum officinale Web growing on mine soils in NE Italy. J Geochemical Explor. 123.

Blanco-Canqui H. 2016. Growing dedicated energy crops on marginal lands and ecosystem services. Soil Sci Soc Am J. 80(4):845–858.

Borenstein M, Hedges L V, Higgins JPT, Rothstein HR. 2021. Introduction to meta-analysis. [place unknown]: John Wiley & Sons.

Brunet J, Varrault G, Zuily-Fodil Y, Repellin A. 2009. Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere. 77(8).

Chandrasekaran M. 2022. Arbuscular Mycorrhizal Fungi Mediated Enhanced Biomass, Root Morphological Traits and Nutrient Uptake under Drought Stress: A Meta-Analysis. J Fungi. 8(7).

Chaturvedi R, Favas P, Pratas J, Varun M, Paul MS. 2018. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicol Environ Saf. 148.

Cooper H, Hedges L V, Valentine JC. 2019. The handbook of research synthesis and meta-analysis. [place unknown]: Russell Sage Foundation.

Daru TP, Mayulu H. 2020. Optimization Of Land Resources Through Forages Development. Eur J Mol Clin Med. 7(7).

Goswami V, Deepika S, Diwakar S, Kothamasi D. 2023. Arbuscular mycorrhizas amplify the risk of heavy metal transfer to human food chain from fly ash ameliorated agricultural soils. Environ Pollut. 329:121733.

Guo J, Chen J, Li C, Wang L, Liang X, Shi J, Zhan F. 2023. Arbuscular Mycorrhizal Fungi Promote the Degradation of the Fore-Rotating Crop (Brassica napus L.) Straw, Improve the Growth of and Reduce the Cadmium and Lead Content in the Subsequent Maize. Agronomy. 13(3).

Hassan SE, Hijri M, St-Arnaud M. 2013. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. N Biotechnol. 30(6).

Hristozkova M, Stancheva I, Geneva M, Boychinova M. 2017. Comparison of several arbuscular mycorrhizal fungi and sweet marjoram (Origanum majorana L.) symbiotic associations in heavy metal polluted soil. Bulg J Agric Sci. 23(3).

Hu ZH, Zhuo F, Jing SH, Li X, Yan TX, Lei LL, Lu RR, Zhang XF, Jing YX. 2019. Combined application of arbuscular mycorrhizal fungi and steel slag improves plant growth and reduces Cd, Pb accumulation in Zea mays. Int J Phytoremediation. 21(9).

Jócsák I, Knolmajer B, Szarvas M, Rabnecz G, Pál-Fám F. 2022. Literature Review on the Effects of Heavy Metal Stress and Alleviating Possibilities through Exogenously Applied Agents in Alfalfa (Medicago sativa L.). Plants. 11(16):2161.

Kalam SU, Naushin F, Bagyaraj DJ, Khan FA. 2019. Role of AM Fungi in the Uptake and Accumulation of Cd and Ni by Luffa aegyptiaca. Water Air Soil Pollut. 230(11).

Kanwal S, Bano A, Malik RN. 2015. Effects of Arbuscular Mycorrhizal Fungi on Metals Uptake, Physiological and Biochemical Response of <i>Medicago Sativa</i> L. with Increasing Zn and Cd Concentrations in Soil. Am J Plant Sci. 06(18).

Keshavarz H, Hosseini SJ, Sedibe MM, Achilonu MC. 2022. ARBUSCULAR MYCORRHIZAL FUNGI USED TO SUPPORT IRANIAN BARLEY CULTIVATED ON CADMIUM CONTAMINATED SOILS (Hordeum vulgare L.). Appl Ecol Environ Res. 20(1).

Khan SN, Nafees M, Imtiaz M. 2023. Phytoremediation Potential of Arbuscular Mycorrhizal Fungi and Berseem in Soil Irrigated with Industrial Wastewater. J Hunan Univ Nat Sci. 50(4).

Kuang Y, Li X, Wang Z, Wang X, Wei H, Chen H, Hu W, Tang M. 2023. Effects of Arbuscular Mycorrhizal Fungi on the Growth and Root Cell Ultrastructure of Eucalyptus grandis under Cadmium Stress. J Fungi. 9(2).

Kumar H, Ishtiyaq S, Favas PJC, Varun M, Paul MS. 2022. Effect of Metal-resistant PGPB on the Metal Uptake, Antioxidative Defense, Physiology, and Growth of Atriplex lentiformis (Torr.) S.Wats. in Soil Contaminated with Cadmium and Nickel. J Plant Growth Regul.

Lam CM, Lai HY. 2018. Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.). Ecotoxicol Environ Saf. 162.

Lavado RS, Chiocchio VM. 2023. Symbiosis of Plants with Mycorrhizal and Endophytic Fungi. Plants. 12(8):1688.

Li M, Cui W, Zhuang Y, Zhang L. 2017. Inoculation of AM fungi: An effective tool to reduce Cd accumulation in peanut kernel. Int J Agric Biol. 19(5).

Li W, Chen K, Li Q, Tang Y, Jiang Y, Su Y. 2023. Effects of Arbuscular Mycorrhizal Fungi on Alleviating Cadmium Stress in Medicago truncatula Gaertn. Plants. 12(3).

Li X, Zhou M, Shi F, Meng B, Liu J, Mi Y, Dong C, Su H, Liu X, Wang F, Wei Y. 2023. Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): From enriched isotope tracing perspective. Ecotoxicol Environ Saf. 255.

Liu Y, Cui W, Li W, Xu S, Sun Y, Xu G, Wang F. 2023. Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil. J Hazard Mater. 442.

Mitra D, Djebaili R, Pellegrini M, Mahakur B, Sarker A, Chaudhary P, Khoshru B, Gallo M Del, Kitouni M, Barik DP. 2021. Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. J Plant Nutr. 44(13):1993–2028.

Mudgal V, Raninga M, Patel D, Ankoliya D, Mudgal A. 2022. A review on Phytoremediation: Sustainable method for removal of heavy metals. Mater Today Proc.

Neagoe A, Iordache V. 2023. A Commercial Arbuscular Mycorrhizal Inoculum Alleviated the Effects of Acid Water on Lupinus angustifolius Grown in a Sterilized Mining Dump. Plants. 12(10):1983.

Patel S, Sharma A, Batra NG. 2022. Arbuscular Mycorrhizal Fungi-Assisted Bioremediation Bioremediations of Heavy Metals: A Revaluation. In: Innov Environ Biotechnol. [place unknown]: Springer; p. 785–804.

Pirsarandib Y, Hassanpouraghdam MB, Rasouli F, Aazami MA, Puglisi I, Baglieri A. 2022. Phytoremediation of soil contaminated with heavy metals via arbuscular mycorrhiza (funneliformis mosseae) inoculation ameliorates the growth responses and essential oil content in lavender (lavandula angustifolia L.). Agronomy. 12(5):1221.

Putra B, Warly L, Evitayani, Utama BP. 2022a. The role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and their effect on the growth of Pennisetum purpureum cv. Mott on gold mine tailings in Muara Bungo, Jambi, Indonesia. Biodiversitas. 23(1):478–485.

Putra B, Warly L, Evitayani, Utama BP. 2022b. Effect of arbuscular mycorrhizal fungi on nutrients and heavy metals uptake by Pennisetum purpureum cv Mott in phytoremediation of gold mine tailings. J Degrad Min Lands Manag. 10(1).

Rashidi S, Yousefi AR, Pouryousef M, Goicoechea N. 2022. Effect of arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea. Chem Biol Technol Agric. 9(1).

Rosenthal R. 1979. The file drawer problem and tolerance for null results. Psychol Bull. 86(3):638.

Sanchez-Meca J, Marin-Martinez F. 2010. Meta analysis, International Encyclopedia of Education.

Singh G, Pankaj U, Chand S, Verma RK. 2019. Arbuscular Mycorrhizal Fungi-Assisted Phytoextraction of Toxic Metals by Zea mays L. From Tannery Sludge. Soil Sediment Contam. 28(8).

Singh H V, Singh UB, Sahu PK, Malviya D, Singh S, Saxena AK. 2022. Arbuscular Mycorrhizal Fungal Symbiosis for Mutual Benefit: More Than Expectation. In: Re-visiting Rhizosph Eco-system Agric Sustain. [place unknown]: Springer; p. 105–128.

Sun H, Fu J, Yang F. 2020. Effect of arbuscular mycorrhizal fungi on switchgrass growth and mineral nutrition in cadmium-contaminated soil. Polish J Environ Stud. 29(2).

Sun S, Fan X, Feng Y, Wang X, Gao H, Song F. 2023. Arbuscular mycorrhizal fungi influence the uptake of cadmium in industrial hemp (Cannabis sativa L.). Chemosphere. 330:138728.

Wu S, Shi Z, Huang M, Li Y, Gao J. 2023. Effects of Arbuscular Mycorrhizal Fungi on Leaf N: P: K Stoichiometry in Agroecosystem. Agronomy. 13(2).

Yang Y, Huang B, Xu J, Li Z, Tang Z, Wu X. 2022. Heavy metal domestication enhances beneficial effects of arbuscular mycorrhizal fungi on lead (Pb) phytoremediation efficiency of Bidens parviflora through improving plant growth and root Pb accumulation. Environ Sci Pollut Res. 29(22).

Yu Z, Zhao X, Liang X, Li Z, Wang L, He Y, Zhan F. 2022. Arbuscular Mycorrhizal Fungi Reduce Cadmium Leaching from Sand Columns by Reducing Availability and Enhancing Uptake by Maize Roots. J Fungi. 8(8).

Zhan F, Li B, Jiang M, Li T, He Y, Li Y, Wang Y. 2019. Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass [Cynodon dactylon (L.) Pers.] grown in a lead–zinc mine wasteland. Int J Phytoremediation. 21(9).

Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y. 2018. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res. 25(24).

Zhang J, Su L, Yan K, Li M, He Y, Zu Y, Zhan F, Li T. 2021. An arbuscular mycorrhizal fungus increased the macroaggregate proportion and reduced cadmium leaching from polluted soil. Int J Phytoremediation. 23(7).