The Effect of Incubation Time and Drainage pH on the Immobilization of Copper in Post Coal Mine Soil Using Sumatera Brown Coal Char

Main Article Content

Muhammad Haviz
Damris Muhammad
Maria Vabylita
MIftahul Djana
Rizka Mayasari
Ashruri
Sandri Erfani
Yuli Darni
Opik Taufik Purwadi
Simparmin Ginting

Abstract

Post coal mine (PCM) activities pose significant environmental challenges. Soils affected by PCM often exhibit increased acidity and elevated levels of heavy metals. In the case of Sungai Buluh PCM in the Jambi Province, Indonesia, copper (Cu) levels in the soil reach 94.79 mg kg-1, surpassing the Indonesian standard of 40 mg kg-1. Sumatera brown coal (SBC), typically is not considered as fuel due to its properties, offers a cost-effective solution for Cu immobilization in such soils. In this study, SBC was subjected to pyrolysis at 400°C for 1 h, sieved through a 10-mesh sieve, and characterized using SEM and FTIR. The soil-char mixture consisted of 250 g of soil and 25 g of char (9:1 ratio), while a control group included 250 grams of soil with no char. The soil's pH significantly influenced Cu adsorption by SBC char. Cu immobility by SBC char was highest at pH 5, with an efficiency of 66.67% from pH 1 to 5. Over a 4-week period, the mobility of Cu in soil containing 10% char decreased by 36.36%. Pseudo-first-order kinetics yielded R2 values of 0.750 and 0.979 for 0% and 10% char additions, respectively. To inform future research on SBC char's potential for soil amendment, exploring the properties of SBC char produced at different pyrolysis temperatures is advisable. This information can aid in the development of char furnaces with appropriate technology to efficiently produce large quantities of effective SBC char. Additionally, determining optimal incubation times can help predict the frequency of char application in various regions.

Article Details

How to Cite
Haviz, M., Muhammad, D., Vabylita, M., Djana, M., Mayasari, R., Ashruri, Erfani, S., Darni, Y., Taufik Purwadi, O., & Ginting, S. (2023). The Effect of Incubation Time and Drainage pH on the Immobilization of Copper in Post Coal Mine Soil Using Sumatera Brown Coal Char. Applied Environmental Research, 45(4). https://doi.org/10.35762/AER.2023023
Section
Original Article

References

Lee, S. S., Lim, J. E., El-Azeem, S. A. A., Choi, B., Oh, S. E., Moon, D. H., & Ok, Y. S. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research, 2013, 20, 1719-1726.

Park, J. H., Choppala, G., Lee, S. J., Bolan, N., Chung, J. W., & Edraki, M. Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air, & Soil Pollution, 2013, 224, 1-12.

Cui, H., Ma, K., Fan, Y., Peng, X., Mao, J., Zhou, D., ... & Zhou, J. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal. Environmental Science and Pollution Research, 2016, 23, 10808-10817.

Arjumend, T., Abbasi, M. K., & Rafique, E. Effects of lignite-derived humic acid on some selected soil properties, growth and nutrient uptake of wheat (Triticum aestivum L.) grown under greenhouse conditions. Pakistan Journal of Botany, 2015, 47(6), 2231-2238.

Yanmei, A., Wang, Y., Song, L., Hong, W., Zhang, Z., Li, X., ... & Zhou, J. Effects of biochar on the physiology and heavy metal enrichment of Vetiveria zizanioides in contaminated soil in mining areas. Journal of Hazardous Materials, 2023, 130965.

O'Connor, D., Peng, T., Zhang, J., Tsang, D. C., Alessi, D. S., Shen, Z., ... & Hou, D. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Science of the total environment, 2018, 619, 815-826.

Ahmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C., & Ok, Y. S. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of soils and sediments, 2017, 17, 717-730.

Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S. F., Fenton, O., Malina, G., & Szara, E. Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, 2020, 722, 137852.

Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., & Ugbe, J. O. Green manures and NPK fertilizer effects on soil properties, growth, yield, mineral and vitamin C composition of okra (Abelmoschus esculentus (L.) Moench). Journal of the Saudi Society of Agricultural Sciences, 2019, 18(2), 218-223.

Li, Y., Wang, Z. H., Huang, Z. Y., Liu, J. Z., Zhou, J. H., & Cen, K. F. Effect of pyrolysis temperature on lignite char properties and slurrying ability. Fuel Processing Technology, 2015, 134, 52-58.

Qi, J., Fan, C., & Li, S. Characteristics of lignite char derived from oxy-pyrolysis. Fuel, 2021, 291, 120261.

Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q., & Zeng, G. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Science of the Total Environment, 2018, 635, 92-99.

Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, Xiaodong, Wu, H., Qian, Y., Li, Xuemei, Luo, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere, 2017, 181, 281–288.

Houben, D., Evrard, L., & Sonnet, P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 2013, 92(11), 1450-1457.

Haviz, M., Nur, A.F., Muhammad, D., Vabylita, M.F., Afriani, L. and Ashruri, A. Pengaruh Penambahan Biochar dari Lignite pada Tanah Bekas Penambangan Batubara terhadap Potensi Immobilisasi Logam Seng (Zn) Menggunakan Batch Experiment. Jurnal Teknologi dan Inovasi Industri (JTII), 2021, 2(2).

Haviz, M. Pengaruh waktu dan ukuran partikel pada pengeringan batubara dengan menggunakan gelombang mikro. Jurnal Teknologi dan Inovasi Industri (JTII), 2020, 1(2).

Hoslett, J., Ghazal, H., Ahmad, D. and Jouhara, H. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Science of the total environment, 2019, 673, pp.777-789.

Munir, M.A.M., Liu, G., Yousaf, B., Ali, M.U., Cheema, A.I., Rashid, M.S., Rehman, A. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil. Environ. Pollut. 2020, 265, 114816.

Pan, J., Ma, J., Liu, X., Zhai, L., Ouyang, X., Liu, H. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol., 2019, 275, 258–265. https://doi.org/10.1016/j.biortech.2018.12.068.

Zhang, H., Chen, C., Gray, E.M., Boyd, S.E. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy, 2017, 105, 136–146.

Fuertes, A.B., Camps Arbestain, M., Sevilla, M., Maciá-Agulló, J.A., Fiol, S., López, R.,Smernik, R.J., Aitkenhead, W.P., Arce, F., Macias, F. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res., 2010, 48, 618–626.

Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M.B. and Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource technology, 2011, 102(19), pp.8877-8884.

Davila, R.B., Fontes, M.P.F., Pacheco, A.A. and da Silva Ferreira, M. Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. science of the total environment, 2020, 709, p.136151.

Lin, Q., Zhang, J., Yin, L., Liu, H., Zuo, W. and Tian, Y. Relationship between heavy metal consolidation and H2S removal by biochar from microwave pyrolysis of municipal sludge: effect and mechanism. Environmental Science and Pollution Research, 2021, 28(22), pp.27694-27702.

Xu, X., Wu, Y., Wu, X., Sun, Y., Huang, Z., Li, H., ... & Huang, J. Effect of physicochemical properties of biochar from different feedstock on remediation of heavy metal contaminated soil in mining area. Surfaces and Interfaces, 2022, 102058.

Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., ... & Scheckel, K. Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize?. Journal of hazardous materials, 2014, 266, 141-166.

Jiang, J.P., Yuan, X.B., Ye, L.L., Liao, S.C. and Zhang, X.H.. Characteristics of straw biochar and its influence on the forms of arsenic in heavy metal polluted soil. In Applied Mechanics and Materials, 2013, (Vol. 409, pp. 133-138). Trans Tech Publications Ltd.

Kim, K.R., Owens, G. and Naidu, R. Effect of root-induced chemical changes on dynamics and plant uptake of heavy metals in rhizosphere soils. Pedosphere, 2010, 20(4), pp.494-504.

Mahar, A., Wang, P., Ali, A., Lahori, A.H., Awasthi, M.K., Wang, Z., Guo, Z., Wang, Q., Feng, S., Li, R. and Zhang, Z. (Im) mobilization of soil heavy metals using CaO, FA, sulfur, and Na2S: a 1-year incubation study. International journal of environmental science and technology, 2018, 15(3), pp.607-620.

Kim, K.R., Kim, J.G., Park, J.S., Kim, M.S., Owens, G., Youn, G.H. and Lee, J.S. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. Journal of environmental management, 2012, 102, pp.88-95.

Kılıc, M., Kırbıyık, C., Çepelioğullar, Ö., & Pütün, A. E. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, 2013, 283, 856-862.

Kim, H.S., Kim, K.R., Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G. and Kim, K.H. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environmental Earth Sciences, 2015, 74(2), pp.1249-1259.

Shrestha, R. K., & Lal, R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma, 2011, 161(3-4), 168-176.

Houben, D., Pircar, J., & Sonnet, P. Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. Journal of Geochemical Exploration, 2012, 123, 87-94.

Xu, J., Zhang, Y., Li, B., Fan, S., Xu, H., & Guan, D. X. Improved adsorption properties of tetracycline on KOH/KMnO4 modified biochar derived from wheat straw. Chemosphere, 2022, 296, 133981.

Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N.S., Pei, J. and Huang, H. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 2013, 20(12), pp.8472-8483.

Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 2019, 4(1), 97-118.

Li, M., Liu, Q., Guo, L., Zhang, Y., Lou, Z., Wang, Y., & Qian, G. Cu (II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresource technology, 2013141, 83-88.

Tumin, N. D., Chuah, A. L., Zawani, Z., & Rashid, S. A Adsorption of copper from aqueous solution by Elais Guineensis kernel activated carbon. Journal of Engineering Science and Technology, 2008, 3(2), 180-189.

Sharma, Y. C., & Upadhyay, S. N. Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy & Fuels, 2009, 23(6), 2983-2988.

Ouasif, H., Yousfi, S., Bouamrani, M. L., El Kouali, M., Benmokhtar, S., & Talbi, M. Removal of a cationic dye from wastewater by adsorption onto natural adsorbents. J. Mater. Environ. Sci, 2013, 4(1), 1-10.

Doskočil, L., & Pekař, M. Removal of metal ions from multi-component mixture using natural lignite. Fuel Processing Technology, 2012, 101, 29-34.

Tong, X.J., Li, J.Y., Yuan, J.H., Xu, R.K.. Adsorption of Cu (II) by biochars generated from three crop straws. Chem. Eng. J. 2011, 172, 828–834

Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and bioenergy, 2012, 47, 268-276.

Adebajo, S. O., Akintokun, A. K., Ojo, A. E., Egbagbe, D. M., Akintokun, P. O., & Adebajo, L. O. Biosurfactant Production by Rhizospheric Bacteria Isolated from Biochar Amended Soil Using Different Extraction Solvents. Applied Environmental Research, 2019, 41(3), 72-82.

Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., & Vithanage, M. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 2015, 15, 126-138.

Kumpiene, J. Trace element immobilization in soil using amendments. Trace elements in soils, 2010, 353-379.

Ma, L. Q., & Dong, Y. Effects of incubation on solubility and mobility of trace metals in two contaminated soils. Environmental Pollution, 2004, 130(3), 301-307.

Hoslett, J., Ghazal, H., Ahmad, D. and Jouhara, H. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Science of the total environment, 2019, 673, pp.777-789.

Park, J. H., Choppala, G., Lee, S. J., Bolan, N., Chung, J. W., & Edraki, M. Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air, & Soil Pollution, 2013, 224, 1-12.

Bella, H., & Bendaikha, H. Biochar from Empty Date Fruit Bunch as an Adsorbent to Remove Eriochrome Black T and Methylene Blue from Aqueous Solution. Applied Environmental Research, 2022, 44(2), 44-55