การหาค่าความน่าจะเป็นในการส่งผ่านสำหรับพลังงานศักย์แบบต่างๆ โดยวิธีการประมาณแบบดับเบิลยูเคบี
Main Article Content
บทคัดย่อ
กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถอธิบายปรากฏการณ์ของวัตถุที่มีขนาดระดับอะตอมหรือเล็กกว่าได้ในขณะที่กลศาสตร์แบบดั้งเดิมไม่สามารถอธิบายได้สมการหลักของกลศาสตร์ควอนตัมคือสมการชเรอดิงเงอร์ในทางคณิตศาสตร์สมการชเรอดิงเงอร์เป็นสมการเชิงอนุพันธ์ย่อยอันดับสอง ซึ่งเป็นสมการที่อธิบายว่า ฟังก์ชันคลื่นเปลี่ยนแปลงกับเวลาอย่างไร สำหรับปัญหาส่วนใหญ่ในกลศาสตร์ควอนตัม เราไม่สามารถแก้สมการชเรอดิงเงอร์แบบแม่นตรงได้ยกเว้นในระบบที่อุดมคติบางระบบเท่านั้น ที่สามารถหาคำตอบแบบแม่นตรงได้ดังนั้น เราจำเป็นต้องหาวิธีการประมาณเพื่อให้ได้คำตอบของสมการชเรอดิงเงอร์ในบทความนี้เราสนใจระบบที่อยู่ในสถานะคงตัว ซึ่งสมการชเรอดิงเงอร์จะลดรูปเป็นสมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลา วิธีการประมาณวิธีการหนึ่งที่สามารถใช้ได้กับระบบที่อยู่ในสถานะคงตัวคือ วิธีการประมาณแบบดับเบิลยูเคบีในบทความนี้เราคำนวณหาค่าความน่าจะเป็นในการส่งผ่านสำหรับพลังงานศักย์แบบต่างๆ โดยวิธีการประมาณแบบดับเบิลยูเคบีพลังงานศักย์ท่ีเราศึกษาในบทความนี้ได้แก่ พลังงานศักย์แบบสี่เหลี่ยมจัตุรัสอสมมาตร พลังงานศักย์แบบไฮเพอร์โบลิกแทนเจนต์พลังงานศักย์แบบไฮเพอร์โบลิกซีแคนต์กำลังสอง และพลังงานศักย์แบบดับเบิลไฮเพอร์โบลิกซีแคนต์กำลังสอง
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.