Exploring Sodium Insertions into Delithiated NMC Structures: Toward the Utilization of Recycled Materials in Sodium-Ion Batteries
Main Article Content
Abstract
As the demand for sustainable and cost-effective energy storage increases, sodium-ion batteries (SIBs) are gaining attention as a viable alternative to lithium-ion systems, owing to sodium’s abundance and lower cost. In this work, we present an innovative strategy to bridge these technologies by reutilizing NMC cathodes layered transition metal oxides commonly used in lithium-ion batteries as active materials in SIBs. The LiNMC cathodes were delithiated in Li half-cells and subsequently sodiated in Na half-cells to form sodiated Li1-xNMC phases (NayNMC). The electrochemical characteristics of the new sodium phases NayNMC were compared, focusing on the effect of transition metal composition on sodium-ion transport and stabilization of the layered structure. Initial charge capacities were closely related to the lithium ions retained in the structure, which stabilized the O3-type layered structure. The capacities, rate capability, and cycling stability of the NayNMC materials were influenced by the transition metal composition. Notably, NayNMC811 exhibited the best overall performance in terms of usable capacity, rate capability, and cycling stability. These findings reveal how transition metal composition governs structural stability and performance, offering a clear strategy for designing next-generation sodium-ion cathodes from recycled materials.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Berthelot, R., Carlier, D. and Delmas, C. (2010). Electrochemical Investigation of the P2–NaxCoO2 Phase Diagram. Nature Materials 10(1): 74 - 80. doi: 10.1038/nmat2920.
Bublil, S., Fayena-Greenstein, M., Talyanker, M., Solomatin, N., Tsubery, M.N., Bendikov, T., Penki, T.R., Grinblat, J., Durán, I.B., Grinberg, I., Ein-Eli, Y., Elias, Y., Hartmann, P. and Aurbach, D. (2018). Na-Ion Battery Cathode Materials Prepared by Electrochemical Ion Exchange from Alumina-Coated Li1+xMn0.54Co0.13Ni0.1+yO2. Journal of Materials Chemistry A 6(30): 14816 - 14827. doi: 10.1039/C8TA0 5068F.
Clément, R.J., Bruce, P.G. and Grey, C.P. (2015). Review Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials. Journal of The Electrochemical Society 162(14): A2589 - A2604. doi: 10.1149/2.0201514jes.
Han, S.C., Bae, E.G., Lim, H. and Pyo, M. (2014). Non-Crystalline Oligopyrene as a Cathode Material with a High-Voltage Plateau for Sodium Ion Batteries. Journal of Power Sources 254: 73 - 79. doi: 10.1016/ J.JPOWSOUR.2013.12.104.
Hasa, I., Buchholz, D., Passerini, S., Scrosati, B. and Hassoun, J. (2014). High Performance Na0.5[Ni0.23 Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries. Advanced Energy Materials 4(15): 1400083. doi: 10.1002/AENM.201400083.
Hashem, A.M., Abdel-Ghany, A.E., Abuzeid, H.M., Ehrenberg, H., Mauger, A., Groult, H. and Julien, C.M. (2013). LiNi1/3Mn1/3Co1/3O2 Synthesized by Sol-Gel Method: Structure and Electrochemical Properties. ECS Transactions 50(24): 91 - 96. doi: 10.1149/05024.0091ECST.
Heubner, C., Matthey, B., Lein, T., Wolke, F., Liebmann, T., Lämmel, C., Schneider, M., Herrmann, M. and Michaelis, A. (2020). Insights into the Electrochemical Li/Na-Exchange in Layered LiCoO2 Cathode Material. Energy Storage Materials 27: 377 - 386. doi: 10.1016/J.ENSM.2020.02.012.
Hwang, J.Y., Myung, S.T. and Sun, Y.K. (2017). Sodium-Ion Batteries: Present and Future. Chemical Society Reviews 46(12): 3529 - 3614. doi: 10.1039/C6CS00776G.
Hwang, J.Y., Yoon, C.S., Belharouak, I. and Sun, Y.K. (2016). A Comprehensive Study of the Role of Transition Metals in O3-Type Layered Na[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, and 0.8) Cathodes for Sodium-Ion Batteries. Journal of Materials Chemistry A 4(46): 17952 - 17959. doi: 10.1039/C6TA07392A.
Hwang, J.Y., Oh, S.M., Myung, S.T., Chung, K.Y., Belharouak, I. and Sun, Y.K. (2015). Radially Aligned Hierarchical Columnar Structure as a Cathode Material for High Energy Density Sodium-Ion Batteries. Nature Communications doi: 10.1038/ncomms7865.
Jung, R., Metzger, M., Maglia, F., Stinner, C. and Gasteiger, H.A. (2017a). Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries. Journal of The Electrochemical Society 164(7): A1361 - 1377. doi: 10.1149/2.0021707JES/.
Jung, R., Metzger, M., Maglia, F., Stinner, C. and Gasteiger, H.A. (2017b). Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon. Journal of Physical Chemistry Letters 8(19): 4820 - 4825. doi: 10.1021/ACS.JPCLETT.7B01927.
Kim, D., Lee, E., Slater, M., Lu, W., Rood, S. and Johnson, C.S. (2012). Layered Na[Ni1/3Fe1/3Mn1/3]O2 Cathodes for Na-Ion Battery Application. Electrochemistry Communications 18(1): 66 - 69. doi: 10.1016/J.ELE COM.2012.02.020.
Kubota, K. and Komaba, S. (2015). Review Practical Issues and Future Perspective for Na-Ion Batteries. Journal of The Electrochemical Society 162(14): A2538 - A2550. doi: 10.1149/2.0151514JES.
Mu, L., Xu, S., Li, Y., Hu, Y.S., Li, H., Chen, L. and Huang, X. (2015). Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode. Advanced Materials 27(43): 6928 - 6933. doi: 10.1002/ADMA.201502449.
Nayak, P.K., Yang, L., Brehm, W. and Adelhelm, P. (2018). From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angewandte Chemie International Edition 57(1): 102 - 120. doi: 10.1002/ANIE.201703772.
Nguyen, V.H., Nguyen, L.M., Huynh, T.T.K., Tran, V.M. and Le, M.L.P. (2021). New Sodium Intercalation Cathode Prepared by Sodiation of Delithiated Host LiNi1/3 Mn1/3Co1/3O2. Advances in Materials Science and Engineering 2021: 6280582. doi: 10.1155/2021/6280582.
Nose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S. and Iba, H. (2013). Na4Co3(PO4)2P2O7: A Novel Storage Material for Sodium-Ion Batteries. Journal of Power Sources 234: 175 - 179. doi: 10.10 16/J.JPOWSOUR.2013.01.162.
Oh, S.M., Myung, S.T., Hwang, J.Y., Scrosati, B., Amine, K. and Sun. Y.K. (2014). High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries. Chemistry of Materials 26(21): 6165 - 6171. doi: 10.1021/CM502481B.
Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J.M. and Prakash, A.S. (2012). Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials 24(10): 1846 - 1853. doi: 10.1021/CM300466B.
Van Man, T., Nguyen, H.L.T., Nam, L.P.P., Linh, N.D., An, P.L.B and Phung, L.M.L. (2018). Electrochemical Na-Migration into Delithiated Phase LizNi1/3Mn1/3Co1/3O2: Structure and Electrochemical Properties. Journal of The Electrochemical Society 165(7): A1558. doi: 10.1149/2.1281807jes.
Wang, Y., Xiao, R., Hu, Y.S., Avdeev, M. and Chen, L. (2015). P2-Na0.6[Cr0.6Ti0.4]O2 Cation-Disordered Electrode for High-Rate Symmetric Rechargeable Sodium-Ion Batteries. Nature Communications 2015 6(1): 6954. doi: 10.1038/ncomms7954.
Xiang, X., Zhang, K. and Chen, J. (2015). Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries. Advanced Materials 27(36): 5343 - 5364. doi: 10.1002/ADMA.201501527.
Xu, G.L., Amine, R., Xu, Y.F., Liu, J., Gim, J., Ma, T., Ren, Y., Sun, C.J., Liu, Y., Zhang, X., Heald, S.M., Solhy, A., Saadoune, I., Mattis, W.L., Sun, S.G., Chen, Z. and Amine, K. (2017). Insights into the Structural Effects of Layered Cathode Materials for High Voltage Sodium-Ion Batteries. Energy & Environmental Science 10(7): 1677 - 1693. doi: 10.1039/C7EE00827A.
Xu, J., Lee, D.H., Clément, R.J., Yu, X., Leskes, M., Pell, A.J., Pintacuda, G., Yang, X., Grey, C.P. and Meng, Y.S. (2014). Identifying the Critical Role of Li Substitution in P2-Nax[LiyNizMn1-y-Z]O2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries. Chemistry of Materials 26(2): 1260 - 1269. doi: 10.1021/cm403855t
Yabuuchi, N., Kubota, K., Dahbi, M. and Komaba, S. (2014). Research Development on Sodium-Ion Batteries. Chemical Reviews 114(23): 11636 - 11682. doi: 10.1021/cr500192f
Yabuuchi, N. and Ohzuku, T. (2005). Electrochemical Behaviors of LiCo1/3Ni1/3Mn1/3O2 in Lithium Batteries at Elevated Temperatures. Journal of Power Sources 146(1-2): 636 - 639. doi: 10.1016/J.JPOWSOUR. 2005.03.080.
Yabuuchi, N., Yano, M., Yoshida, H., Kuze, S., and Komaba, S. (2013). Synthesis and Electrode Performance of O3-Type NaFeO2 -NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries. Journal of The Electrochemical Society 160(5): A3131 - 3137. doi: 10.1149/2.018305JES.
Yuan, D., Hu, X., Qian, J., Pei, F., Wu, F., Mao, R., Ai, Xinping., Yang, H. and Cao, Y. (2014). P2-Type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-Capacity for Sodium-Ion Battery. Electrochimica Acta 116: 300 - 305. doi: 10.1016/J.ELECTACTA.2013.10.211.
Zhu, J., Vo, T., Li, D., Lu, R., Kinsinger, N.M., Xiong, L., Yan, Y. and Kisailus, D. (2012). Crystal Growth of Li[Ni1/3Co1/3Mn1/3]O2 as a Cathode Material for High-Performance Lithium-Ion Batteries. Crystal Growth and Design 12(3): 1118 - 1123. doi: 10.1021/cg200565n.