Trajectory of Massive Particle Around a Magnetically Charged Compact Object in Einstein-Maxwell-dilaton Gravity

Main Article Content

Chawit Sakkawattana
Supakchai Ponglertsakul

Abstract

In this work, we investigate an orbital motion of massive particle around a static and spherically symmetric magnetically charged object in Einstein-Maxwell-dilaton gravity. This solution has three characteristics parameters, dilaton flux equation, magnetic charged equation and dilaton coupling constant equation. These results provide observational means for understanding physical behaviors of magnetically charged compact object in general relativity.

Article Details

How to Cite
Sakkawattana, C., & Ponglertsakul, S. (2025). Trajectory of Massive Particle Around a Magnetically Charged Compact Object in Einstein-Maxwell-dilaton Gravity. KKU Science Journal, 54(1), 73–82. https://doi.org/10.14456/kkuscij.2026.6
Section
Research Articles

References

Ayón-Beato, E. and García, A. (1998). Regular black hole in general relativity coupled to nonlinear electrodynamics. Physical Review Letters 80(23): 5056 - 5059 doi: 10.1103/physrevlett.80.5056.

Carter, B. (1968). Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations. Communications in Mathematical Physics 10(4): 280 - 310. doi: 10.1007/BF03399503.

Chandrasekhar, S. (1998). The Mathematical Theory of Black Holes. (1st ed). New York: Oxford University Press.

Chen, C.Y., Bouhmadi-López, M. and Chen, P. (2019). Probing Palatini-type gravity theories through gravitational wave detections via quasi-normal modes. The European Physical Journal C 79: 63. doi: 10.1140/epjc/s10052-019-6585-y.

Cunha, P.V.P., Herdeiro, C.A.R., Radu, E. and Rúnarsson, H.F. (2015). Shadows of Kerr Black Holes with Scalar Hair. Physical Review Letters 115(21): 211102. doi: 10.1103/physrevlett.115.211102.

Fernando, S. (2006). Thermodynamics of Born-Infeld–anti-De Sitter black holes in the grand canonical ensemble. Physical Review D 74(10): 104032. doi: 10.1103/physrevd.74.104032.

Garfinkle, D., Horowitz, G.T. and Strominger, A. (1991). Charged black holes in string theory. Physical Review D 43(10): 3140 - 3143. doi: 10.1103/physrevd.43.3140.

Gibbons, G.W. and Maeda, K.I. (1988). Black holes and membranes in higher-dimensional theories with dilaton fields. Nuclear Physics B 298(4): 741 - 775. doi: 10.1016/0550-3213(88)90006-5.

Hirschmann, E. W., Lehner, L., Liebling, S.L. and Palenzuela, C. (2018). Black hole dynamics in Einstein-Maxwell-Dilaton theory. Physical Review D 97(6): 064032. doi: 10.1103/physrevd.97.064032.

Minazzoli, O. and Wavasseur, M. (2025). Compact objects with scalar charge imbedded in a magnetic or electric field in Einstein-Maxwell-dilaton theories. The European Physical Journal C 85(4): 474. doi: 10.1140/epjc/s10052-025-14179-w.

Moffat, J.W. and Toth, V.T. (2020). Masses and shadows of the black holes Sagittarius A* and M87* in modified gravity. Physical Review D 101(2): 024014. doi: 10.1103/physrevd.101.024014.

Porfyriadis, A.P. and Remmen, G.N. (2023). Charged dilatonic spacetimes in string theory. Journal of High Energy Physics 2023(3): 125. doi: 10.1007/jhep03(2023)125.

Promsiri, C., Horinouchi, W. and Hirunsirisawat, E. (2023). Remarks on the light ring images and the optical appearance of hairy black holes in Einstein-Maxwell-dilaton gravity. The European Physical Journal C 84(9): 910. doi: 10.1140/epjc/s10052-024-13258-8.

Sotiriou, T.P. and Faraoni, V. (2008). f(R) theories of gravity. Reviews of Modern Physics 82(1): 451 - 497. doi: 10.1103/revmodphys.82.451.

Vargas, R.M. and Cuyubamba, M.A. (2024). Motion of test particles around an Einstein-Dilaton-Gauss–Bonnet black hole in a uniform magnetic field. Annals of Physics 473: 169907. doi: 10.1016/j.aop.20 24.169907.

Yagi, K. and Stein, L. C. (2016). Black hole based tests of general relativity. Classical and Quantum Gravity 33(5): 054001 doi: 10.1088/0264-9381/33/5/054001.