Trajectory of Massive Particle Around a Magnetically Charged Compact Object in Einstein-Maxwell-dilaton Gravity
Main Article Content
Abstract
In this work, we investigate an orbital motion of massive particle around a static and spherically symmetric magnetically charged object in Einstein-Maxwell-dilaton gravity. This solution has three characteristics parameters, dilaton flux , magnetic charged
and dilaton coupling constant
. These results provide observational means for understanding physical behaviors of magnetically charged compact object in general relativity.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ayón-Beato, E. and García, A. (1998). Regular black hole in general relativity coupled to nonlinear electrodynamics. Physical Review Letters 80(23): 5056 - 5059 doi: 10.1103/physrevlett.80.5056.
Carter, B. (1968). Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations. Communications in Mathematical Physics 10(4): 280 - 310. doi: 10.1007/BF03399503.
Chandrasekhar, S. (1998). The Mathematical Theory of Black Holes. (1st ed). New York: Oxford University Press.
Chen, C.Y., Bouhmadi-López, M. and Chen, P. (2019). Probing Palatini-type gravity theories through gravitational wave detections via quasi-normal modes. The European Physical Journal C 79: 63. doi: 10.1140/epjc/s10052-019-6585-y.
Cunha, P.V.P., Herdeiro, C.A.R., Radu, E. and Rúnarsson, H.F. (2015). Shadows of Kerr Black Holes with Scalar Hair. Physical Review Letters 115(21): 211102. doi: 10.1103/physrevlett.115.211102.
Fernando, S. (2006). Thermodynamics of Born-Infeld–anti-De Sitter black holes in the grand canonical ensemble. Physical Review D 74(10): 104032. doi: 10.1103/physrevd.74.104032.
Garfinkle, D., Horowitz, G.T. and Strominger, A. (1991). Charged black holes in string theory. Physical Review D 43(10): 3140 - 3143. doi: 10.1103/physrevd.43.3140.
Gibbons, G.W. and Maeda, K.I. (1988). Black holes and membranes in higher-dimensional theories with dilaton fields. Nuclear Physics B 298(4): 741 - 775. doi: 10.1016/0550-3213(88)90006-5.
Hirschmann, E. W., Lehner, L., Liebling, S.L. and Palenzuela, C. (2018). Black hole dynamics in Einstein-Maxwell-Dilaton theory. Physical Review D 97(6): 064032. doi: 10.1103/physrevd.97.064032.
Minazzoli, O. and Wavasseur, M. (2025). Compact objects with scalar charge imbedded in a magnetic or electric field in Einstein-Maxwell-dilaton theories. The European Physical Journal C 85(4): 474. doi: 10.1140/epjc/s10052-025-14179-w.
Moffat, J.W. and Toth, V.T. (2020). Masses and shadows of the black holes Sagittarius A* and M87* in modified gravity. Physical Review D 101(2): 024014. doi: 10.1103/physrevd.101.024014.
Porfyriadis, A.P. and Remmen, G.N. (2023). Charged dilatonic spacetimes in string theory. Journal of High Energy Physics 2023(3): 125. doi: 10.1007/jhep03(2023)125.
Promsiri, C., Horinouchi, W. and Hirunsirisawat, E. (2023). Remarks on the light ring images and the optical appearance of hairy black holes in Einstein-Maxwell-dilaton gravity. The European Physical Journal C 84(9): 910. doi: 10.1140/epjc/s10052-024-13258-8.
Sotiriou, T.P. and Faraoni, V. (2008). f(R) theories of gravity. Reviews of Modern Physics 82(1): 451 - 497. doi: 10.1103/revmodphys.82.451.
Vargas, R.M. and Cuyubamba, M.A. (2024). Motion of test particles around an Einstein-Dilaton-Gauss–Bonnet black hole in a uniform magnetic field. Annals of Physics 473: 169907. doi: 10.1016/j.aop.20 24.169907.
Yagi, K. and Stein, L. C. (2016). Black hole based tests of general relativity. Classical and Quantum Gravity 33(5): 054001 doi: 10.1088/0264-9381/33/5/054001.