Study of the Properties of Transparent Conducting Zinc Oxide Thin Films Prepared by Sol-Gel Dip Coating Method

Main Article Content

Chanya Sermsrithong
Waraporn Nisspa
Korakod Wiphahat
Aukkrit Limparangsee

Abstract

This research aims to study the structural, optical, and electrical properties of ZnO thin films prepared by the sol-gel process and dip-coating method under varying coating layer conditions of 1, 3 and 5 layers. The objective was to improve the properties of the ZnO thin films in order to get the proper performance according to the purpose of use and applications in optical electronics and translucent conductors. The analysis of scanning electron microscopy (SEM) showed that the surface morphology of the ZnO films became more uniform in particle distribution with an increasing number of coating layers. The analysis of X-ray diffraction (XRD) and FT-Raman spectroscopy showed that the dominant crystal structure matches the hexagonal wurtzite crystal structure. The optical properties were studied by using UV-Vis spectroscopy, where the films had a light transmittance ranging from 85% to 95%. The transmittance decreased as the number of coating layers increased. The bandgap was found to range from 3.27 eV to 3.29 eV.  The sheet electrical resistance analysis using the four-point probe method showed that the films had sheet resistance values ranging from 1.44 x 107 W/sq to 2.44 x 107 W/sq, with sheet resistance decreasing as the number of coating layers increased. The results of this study indicated that the number of coating layers in the dip-coating process affected various properties of the thin film. This understanding can be applied to further develop and enhance the properties of ZnO thin films for optoelectronic applications and their use as transparent electrodes.

Article Details

How to Cite
Sermsrithong, C., Nisspa, W., Wiphahat, K., & Limparangsee, A. (2025). Study of the Properties of Transparent Conducting Zinc Oxide Thin Films Prepared by Sol-Gel Dip Coating Method. KKU Science Journal, 53(1), 81–91. https://doi.org/10.14456/kkuscij.2025.6
Section
Research Articles

References

กัญจน์ชญา หงส์เลิศคงสกุล, จิราภรณ์ พงษ์โสภา, ภัททิรา หอมหวน และดุสิต งามรุ่งโรจน์ (2559). การสังเคราะห์และการวิเคราะห์เส้นใยนาโนซิงค์ออกไซด์ด้วยเทคนิคการปั่นเส้นใยนาโนด้วยไฟฟ้าสถิต. ชลบุรี: มหาวิทยาลัยบูรพา.

ธนชัย พลเคน, พรนภา ขัวนา, สุดารัตน์ กระแสโสม, พรชัย ชิณสา และวิเชษฐ์ พลหาญ (2566). การปลูกฟิล์มบางซิงค์ออกไซด์เพื่อเป็นขั้วไฟฟ้าสำหรับเซลล์แสงอาทิตย์ด้วยเทคนิคดีซีแมกนีตรอนสปัตเตอริงแบบสองขั้วไม่สมมาตร. วารสารวิทยาศาสตร์ วิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏมหาสารคาม 2(1): 1 - 16.

ธวัชชัย จันทร์ทอง, ธเนศ ณ วิเชียร, วีรวัฒน์ อินทรทัต, ศักดิ์ชาย เพชรช่วย และณัฏฐพงค์ ถือดำ (2563). สมบัติเชิงโครงสร้างและไฟฟ้าของฟิล์บางซิงค์ออกไซด์ที่เตรียมด้วยเทคนิคอาร์เอฟสปัตเตอริง. วารสารมหาวิทยาลัยทักษิณ 23(2): 95 - 103.

Bari, A.R., Bari, P.A. and Bari, R.H. (2019). Studies on sol-gel dip-coated nanostructured ZnO thin films. Journal of Nanostructures 9(2): 326 - 330. doi: 10.22052/JNS.2019.02.014.

Curcio, A.L., Franco de Godoy, M.P., and Rodrigues, A.D.G. (2024). Raman spectroscopy as a method for structural characterization of ZnO-based systems at the nanoscale. Applied Nanoscience 14: 269 - 275. doi: 10.1007/s13204-023-02978-0.

Ding, Y. and Wang, Z.L. (2009). Structures of planar defects in ZnO nanobelts and nanowires. Micron 40(3): 335342. doi: 10.1016/j.micron.2008.10.008.

Garcia de Arquer, F.P., Talapin, D.V., Klimov, V.I., Arakawa, Y., Bayer, M. and Sargent, E.H. (2021). Semiconductor quantum dots: Technological progress and future challenges. Science Journal 373(6555). doi: 10.1126/science.aaz8541.

Gultekin, D. and Akbulut, H. (2016). Raman studies of ZnO products synthesized by solution based methods. ACTA Physica polonica A 129: 803 - 805. doi: 10.12693/APhysPolA.129.803.

Husna, J., Sibuea, S.R., Sulaiman, O.K., Rafiq, Y.M., Suhardi, N., Nasution, A.H., Haramaini, T., Nasution, M.K., Ambri, M. and Rifqi, M.Z.A. (2020). The prospects of zinc oxide (ZnO) for window layer cigs solar cells. ICMR 2019 8th International conference on Multidisciplinary research. European proceedings of Social and behavioural science doi: 10.15405/epsbs.2020.03.03.85.

Islam, M.R., Rahman, M., Farhad, S.F.U. and Podder, J. (2019). Structural, optical and photocatalysis properties of sol-gel deposited Al-doped ZnO thin films. Surfaces and Interfaces 16: 120 – 126. doi: 10.1016/j.surfin.2019.05.007.

Klein, J., Kampermann, L., Mockenhaupt, B., Behrens, M., Strunk, J. and Bacher, G. (2023). Limitations of the Tauc Plot Method. Advance function materials 33: 2304523. doi: 10.1002/adfm.202304523.

Lokhande, B.J. and Uplane, M.D. (2000). Structural, optical and electrical studies on spray deposited highly oriented ZnO films. Applied Surface Science 167(3 - 4): 243 – 246. doi: 10.1016/S0169-4332(00)00 533-X.

Madlol, R.A.A. (2017). Structural and optical properties of ZnO nanotube synthesis via novel method. Results in Physics 7: 1498 - 1503. doi: 10.1016/j.rinp.2017.04.018.

Muchuweni, E., Sathiaraj, T.S. and Nyakotyo, H. (2017). Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 3(4) doi: 10.1016/j.heliyon.2017.e00285.

Muslih, E.Y., and Kim, K.H. (2017). Preparation of Zinc Oxide (ZnO) Thin Films as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process. IOP Conference Series: Materials Science and Engineering 214: 012001.

Mustapha, N., Abdel Rafea, M., Aldaghri, O., Abdelaziz, B.B., and Ibnaouf, K.H. (2021). Influence of ZnO nanoparticles on the performance of LED based on oligomer thin films. Journal of Materials Science: Materials in Electronics 32: 5479-5481. doi: 10.1007/s10854-021-05269-y.

Naftaly, M., Das, S., Gallop, J., Pan, K., Alkhalil, F., Kariyapperuma, D., Constant, S., Ramsdale, C. and Hao, L. (2021). Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques. Electronics 10(8). doi: 10.3390/electronics10080960.

Sharma, A., Singh, B.P., Dhar, S., Gondorf, A. and Spasova, M. (2012). Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol-gel route. Surface Science 606

(3 - 4): L13 - L17. doi: 10.1016/j.susc.2011.09.006

Silva, M.N., Santilli, C.V. and Pulcinelli, S.H. (2012). Wettability and Photodegradation activity of sol–gel dip-coated zinc oxide films. Journal of Sol-Gel Science and Technology 63: 230 – 234. doi: 10.1007/s109 71-012-2721-y.

Siti, H.R., Che Abdullah, C.A. and Mohannad Yusoff, M.Z. (2019). Investigations of structural and optical properties of zinc oxide thin films growth on various substrates. Results in Physics 13: 102146. doi: 10.1016/j.rinp.2019.02.082

Song, Y., Zhang, Sh., Zhang, Ch., Yang, Y. and Lv, K. (2019). Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion. Crystals 9(8): 395. doi: 10.3390/cryst9080395.

Toubane, M., Tala-Ighil, R., Bensouici, F., Bououdina, M., Souier, M., Liu, S., Cai, W. and Iratni, A. (2017). Sol concentration effect on ZnO nanofibers photocatalytic activity synthesized by sol–gel dip coating method. Materials Research Express 4(3). doi: 10.1088/2053-1591/aa61cf

Zhong, H., Pan, F., Yue, Sh., Qin, Ch., Hadjiev, V., Tian, F., Lui, X., Lin, F., Wand, Zh. and Bao, J. (2023). Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with Ultraviolet-Visible Spectroscopy: A case Study for Cubic Boron Arsenide. The journal of Physical chemistry letters 14(9): 6702 - 6708. doi: 10.1021/acs.jpclett.3c01416.