Effect of Different Extraction Methods on the Characteristics of Field Cricket (Gryllus bimaculatus) Powder

Main Article Content

Nattacha Siriwarin
Pran Pinthong
Montakan Aimkaew
Pimporn Plaichan
Noppawan Kladward

Abstract

The objective of this research was to study the physicochemical characteristics of cricket powder using three different extraction methods from commercially field crickets (Gryllus bimaculatus) in Thailand. The results from the three extraction methods using 3% of protease enzyme extraction, 0.5 M of sodium hydroxide extraction, and 99.5% of ethanol extraction showed that the protein content increased by 50.8, 43.0, and 42.7%, respectively. In addition, the fat content of protease enzyme extraction obviously decreased by 11.3 g from 18.2 g/100 g fresh weight and showed the highest solubility of 93.55 ± 0.12 g/L. However, the percentage of yield from ethanol extraction was the highest at 85.32 ± 0.12%, followed by extracted cricket powder with base solution and enzyme (76.24 ± 0.34 and 52.15 ± 0.45). The color characterization found that extracted cricket powder with ethanol had the highest brightness at 45.25 ± 0.21, while extracted cricket powder with base solution had the lowest brightness (18.80 ± 0.06). Since ethanol is a non-polar solution that has the ability to dissolve insect pigments, more pigments were dissolved during the extraction period of up to 1 hour. Therefore, the extraction of cricket powder with 3% protease enzyme not only provided high protein content, but also had high solubility and relatively low fat absorption capacity.

Article Details

How to Cite
Siriwarin, N., Pinthong, P. ., Aimkaew, M., Plaichan, P., & Kladward, N. . (2025). Effect of Different Extraction Methods on the Characteristics of Field Cricket (Gryllus bimaculatus) Powder. KKU Science Journal, 53(1), 101–111. https://doi.org/10.14456/kkuscij.2025.8
Section
Research Articles

References

พงศ์พิพัฒน์ สนม และกมลวรรณ แจ้งชัด. (2563). ผลของจิ้งหรีดผง โปรตีนถั่วเหลืองสกัด และแซนแทนกัมที่มีต่อคุณภาพคุกกี้แป้งข้าวเจ้า. วารสารวิชาการและวิจัย มทร. พระนคร 14(2): 72 - 84.

ลีลา กญิกกนันท์ และจารึก ศักดิ์วัฒนกำจร. (2545). ชีววิทยาจิ้งหรีดเพื่อพัฒนาจัดการเพาะเลี้ยง. รายงานการประชุมวิชาการป่าไม้ประจำปี 2545. 341 - 349.

สุนีย์ สหัสโพธิ์. (2563). โปรตีนจากพืชหรือโปรตีนจากสัตว์ที่ดีต่อสุขภาพ. วารสารเทคโนโลยีคหกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร 2(2): 97 - 101.

สุดา ชูถิ่น, กาญจนา เหลืองสุวาลัย และอังสุมา แก้วคต. (2567). ผลของการใช้ผงจิ้งหรีดและแป้งข้าวดัชนีน้ำตาลต่ำทดแทนแป้งสาลีต่อคุณลักษณะทางกายภาพและเคมีของคุ้กกี้เนยกระเทียม. วารสารวิทยาศาสตร์และนวัตกรรมการเกษตร55(2): 122 - 136.

Amarender, R.V., Bhargava, K., Dossey, A.T. and Gamagedara, S. (2020). Lipid and protein extraction from edible insects – Crickets (Gryllidae). LWT- Food Science and Technology 125: 109222. doi: 10.1016 /j.lwt.2020.109222

AOAC International. (2023). Official methods of analysis of AOAC INTERNATIONAL. (22nd ed). Maryland, U.S.A.

Cunha, N., Andrade, V., Macedo, A., Ruivo, P. and Lima, G. (2025). Methods of Protein Extraction from House

Crickets (Acheta domesticus) for Food Purposes. Foods 14(7): 1164.

De Geer, C. (1773). In Mémoires pour servir à l'histoire des insectes. Pierre Hesselberg, Stockholm 696(3): 44.

Gahukar, R.T. (2011). Entomophagy and human food security. International Journal of Tropical Insect Science 31(3): 129 – 144.

Hall, F.G., Jones, O.G., O’Haire, M.E. and Liceaga, A.M. (2017). Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chemistry 224: 414 – 422 doi: 10.1016/j.food chem.2016.11.138.

Hanboonsong, Y., Rattanapan, A. Waikakul, Y. and Liwavanich, A. (2001). Edible Insect Survey in Northeastern Thailand. Khon Kaen Agriculture Journal 29(1): 35 - 44.

Hassan, S.A., Altemimi, A.B., Hashmi, A.A., Shahzadi, S., Mujahid, W., Ali, A., Bhat, Z.F., Naz, S., Nawaz, A.,

Abdi, G. and Aadil, R.M. (2024). Edible crickets, as a possible way to curb protein-energy malnutrition: Nutritional status, food applications, and safety concerns. Food Chemistry: X 23: 101533. doi: 10.1016/j.fochx.2 024.101533.

Hirsch, A., Cho, Y.H., Kim, Y.H.B. and Jones, O.G. (2019). Contributions of protein and milled chitin extracted from domestic cricket powder to emulsion stabilization. Current Research in Food Science 1: 17 - 23. doi: 10.1016/j.crfs.2019.09.002.

Jia, C., Cao, D., Ji, S., Lin, W., Zhang, X. and Muhoza, B. (2020). Whey protein isolate conjugated with xylooligosaccharides via maillard reaction: Characterization, antioxidant capacity, and application for lycopene microencapsulation. LWT- Food Science and Technology 118: 108837. doi: 10.1016/j. lwt.2019.108837.

Kim, T.K., Yong, H.I., Kim, Y.B., Jung, S., Kim, H.W. and Choi, Y.S. (2021). Effects of organic solvent on functional properties of defatted proteins extracted from Protaetia brevitarsis larvae. Food Chemistry 336: 127679. doi: 10.1016/j.foodchem.2020.127679.

Laicharting, J.N.E. (1781). Verzeichniß und Beschreibung der Tyroler-Insecten I Theil Käferartige Insecten I Band. In SUB Göttinger Digitalisierungszentrum (online). Source: http://www.animalbase.uni-goettin gen.de/zooweb/servlet /AnimalBase/home/reference?id=2081. Retrieved date 19 April 2025.

Linnaeus, C.N. (1758). In Systema Naturae per Regna tria naturae (10th ed.). Holmiae. 1: 824.

Mishyna, M., Chen, J., and Benjamin, O. (2019). Sensory attributes of edible insects: A comprehensive review,trends and future prospects. Food Research International 126. 108672.

Ndiritu, A.K., Kinyuru, J.N., Kenji, G.M. and Gichuhi, P.N. (2017). Extraction technique influences the

Physico-chemical characteristics and functional properties of edible crickets (Acheta domesticus)

protein concentrate. Journal of Food Measurement and Characterization 11(4): 2013 – 2021.

Osimani, A., Milanovic, V., Cardinali, F., Roncolini, A., Garofalo, C., Clementi, F., Pasquini, M., Mozzon, M., Foligni, R., Raffaelli, N., Zamporlini, F. and Aquilanti, L. (2018). Bread enriched with cricket powder (Acheta domesticus): A technological microbiological and nutritional evaluation. Innovative Food Science and Emerging Technologies 48: 150 – 163. doi: 10.1016/j.ifset.2018.06.007.

Pawlak, R., Lester, S.E. and Babatunde, T. (2014). The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. European Journal of Clinical Nutrition 68: 541 - 548. doi: 10.1038/ejcn.2014.46.

Rumpold, B.A. and Schlüter, O.K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research 57(5): 802 - 823. doi: 10.1002/mnfr.201200735.

Sillero, J., Gharsallaoui, A. and Prentice, C. (2018). Peptides from Fish By-product Protein Hydrolysates and

Its Functional Properties: an Overview. Marine Biotechnology 20: 118 - 130.

Udomsil N., Imsoonthornruksa, S., Gosalawit, C. and Ketudat-Cairns, M. (2019). Nutritional Values and Functional Properties of House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus). Food Science and Technology Research 25(4): 597 - 605. doi: 10.3136/fstr.25.597.

Vibulsresth P., and Trevanich S. (2003). Microorganism in Food. In. Food Science and Technology. Bangkok: Kasetsart University Publishing. 48 - 64.

Yi, L., Lakemond, C.M.M., Sagis, L.M.C., Eisner-Schadler, V., van Huis, A., and van Boekel, M.A.J.S. (2013). Extraction and characterisation of protein fractions from five insect species. Food Chemistry 141(4): 3341 -3348. doi: 10.1016/j.foodchem.2013.05.115.

Yu, L., Yang, W., Sun, J., Zhang, C., Bi, J. and Yang, Q. (2015). Preparation, Characterization and Physicochemical Properties of the Phosphate Modified Peanut Protein Obtained from Arachin Conarachin L. Food Chemistry 170: 169 - 179. doi: 10.1016/j.foodchem.2014.08.047.

Zhao, X., Vázquez-Gutiérrez, J.L., Johansson, D.P., Landberg, R., and Langton, M. (2016). Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLoS ONE 11(2): e0147791. doi: 10.1371/journal.pone.0147791.