Screening of Vitamin B-6 Producing Bacteria Capable of Producing Plant Growth Promoting Substance

Main Article Content

Kanjaphon Sraprathum
Kannapatsara Sudsee
Jirayut Kaewmor
Jenita Kosanlawit
Chadarat Jaidee
Chompoonut Butnon
Teerapat Wongkasum
Nonthanan Buncharat
Pichitchai Buasri
Praemai Chumpathong
Wannarat Naebklang
Siraprapha Hongchaiyaphum
Sutthida Kamdan
Apisit Laonapakul
Sakuntala Ninkaew
Yanee Trongpanich

Abstract

The objectives of this research were to isolate plant growth promoting rhizobacteria that can produce extracellular vitamin B-6 from rhizospheric soil of legume plants in Khon Kaen University and test their plant growth promoting properties. A total of 932 isolates were pick up by using extracellular vitamin B-6 producing property. Then, 50 isolates were selected to study plant growth promoting properties such as phosphate solubilization, potassium solubilization and Indole-3-acetic acid (IAA) production. Forty-eight isolates showed phosphate solubilizing property; forty-five isolates could solubilize insoluble potassium; and all 50 isolates showed IAA production. Then, the amount of vitamin B-6 production was examined every 6 hours until the end of 24 hours. Five isolates had the highest amount of produced vitamin B-6 at 6 hours and then were identified by biochemical test. Among them, three isolates were related to Brevibacillus laterosporus, Acinetobacter baumannii complex, Bacillus thuringiensis, and two isolates were related to Bacillus cereus. All 5 isolates were in plant growth promoting group. Previous report showed Ba. cereus could produce vitamin B-6, but there are no reports on the production of vitamin B-6 by Ba. thuringiensis, B. laterosporus and A. baumannii complex. However, further studies are needed to obtain their utility to promote plant growth.

Article Details

How to Cite
Sraprathum, K., Sudsee, K., Kaewmor, J., Kosanlawit, J., Jaidee, C., Butnon, C., Wongkasum, T., Buncharat, N., Buasri, P., Chumpathong, P., Naebklang, W., Hongchaiyaphum, S., Kamdan, S., Laonapakul, A., Ninkaew, S., & Trongpanich, Y. (2024). Screening of Vitamin B-6 Producing Bacteria Capable of Producing Plant Growth Promoting Substance. KKU Science Journal, 52(3), 303–318. Retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/257127
Section
Research Articles

References

ขนิษฐา สมตระกูล และวราภรณ์ ฉุยฉาย. (2563). การขาดฟอสฟอรัสในพืชกับบทบาทของแบคทีเรียที่มีความสามารถในการละลายฟอสเฟต. วารสารวิจัยและส่งเสริมวิชาการเกษตร 38(3): 39 - 49.

ธนากร แสงสง่า. (2557). พีจีพีอาร์ : บทบาทในการส่งเสริมและป้องกันพืชภายใต้สภาวะเครียด. วารสารวิทยาศาสตร์และเทคโนโลยี 22(4): 553 - 570.

ศุภชาติ ธรรมนิติเวทย์. (2564). ไรโซแบคทีเรียส่งเสริมการเจริญเติบโตของพืช: หลักการและการใช้ประโยชน์. วารสารเกษตรนเรศวร 18(1): e0180109.

Azizoglu, U. (2019). Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little- known plant growth-promoting properties of Bt. Current Microbiology 76: 1379 – 1385. doi: 10.1007/s00284-019-01705-9.

Christenhusz, M.J.M. and Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261(3): 201 – 17. doi: 10.11646/phytotaxa.261.3.1.

Da’dara, A. A., Elzoheiry, M., El-Beshbishi, S.N. and Skelly, P.J. (2021). Vitamin B6 acquisition and metabolism in Schistosoma Mansoni. Frontiers in Immunology 11: 622162. doi: 10.3389/fimmu.2020.622162.

Farokh, R.Z., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K.R., Zinjarde, S., Dhakephalkar, P.K. and Chopade, B.A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology 21(6): 556 – 566. doi: 10.4014/jmb.1012.12006.

Gregory, J.F. (1982). Relative activity of the nonphosphorylated B-6 vitamers for Saccharaomyces uvarum and Kloeckera brevis in vitamin B-6 microbiological assays. The Journal of Nutrition 112(8): 1643 - 1647. doi: 10.1093/jn/112.8.1643.

Huang, S.H., Liu, J., Zhou, J., Zhang, J.Y. and Huang, L.Q. (2019). Identification and characterization of a pyridoxal 5'-phosphate phosphatase in tobacco plants. Plant Science 278: 88 - 95. doi: 10.1016/j.plantsci.2018.10.014.

Kulkova, I., Dobrzynski, J. Kowalczyk, P., Bełzecki, G. and Kramkowski, K. (2023). Plant growth promotion using Bacillus cereus. International Journal of Molecular Sciences 24(11): 9759. doi: 10.3390/ijms24119759.

Lahsini, A.I., Sallami, A., Ait-Ouakrim, E.H., El Khedri, H., Obtel, M., Douira, A., Modafar, C.E., Benkerroum, N., Talbi, C., Chakhchar, A. and Filali-Maltouf, A. (2022). Isolation and molecular identification of an indigenous abiotic stress-tolerant plant growth-promoting rhizobacteria from the rhizosphere of the olive tree in southern Morocco. Rhizosphere 23: 100554. doi: 10.1016/j.rhisph.2022.100554.

Liu, Y., Maniero, R.A., Giehl, R.F.H., Melzer, M., Steensma, P., Krouk, G., Fitzpatrick, T.B. and von Wirén, N. (2022). PDX1.1-dependent biosynthesis of vitamin B6 protects roots from ammonium-Induced oxidative stress. Molecular Plant 15(5): 820 – 39. doi: 10.1016/j.molp.2022.01.012.

Liu, Y., Zai, X., Weng, G., Ma, X. and Deng, D. (2024). Brevibacillus laterosporus: a probiotic with important applications in crop and animal production. Microorganisms 12(3): 564. doi: 10.3390/microorganisms12030564.

Mangel, N., Fudge, J.B., Li, K-T., Wu, T-Y., Tohge, T., Fernie, A.R., Szurek, B., Fitzpatrick, T.B., Gruissem, W. and Vanderschuren, H. (2019). Enhancement of vitamin B6 levels in rice expressing Arabidopsis vitamin B6 biosynthesis de novo genes. The Plant Journal 99(6): 1047 – 65. doi: 10.1111/tpj.14379.

Palacios, O.A., Bashan, Y. and de-Bashan, L.E. (2014). Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biology and Fertility of Soils 50(3): 415 – 432. doi: 10.1007/s00374-013-0894-3.

Powell J.F. (1958). The changes in the total vitamin B6 and the pyridoxal phosphate content of cells of Bacillus sphaericus during growth and sporulation: their possible relationships with - alphaepsilon-diaminopimelic acid metabolism. The Biochemical journal 70(1): 91 - 6. doi: 10.1042/bj0700091.

Rangel-Montoya, E.A., Delgado-Ramírez, C.S., Sepulveda, E. and Hernández-Martínez, R. (2022). Biocontrol of Macrophomina Phaseolina using Bacillus Amyloliquefaciens strains in cowpea (Vigna Unguiculata L.). Agronomy 12(3): 676. doi: 10.3390/agronomy12030676.

Roychoudhury, A. (2021). Metabolic engineering of water-soluble vitamins in plants for enhanced nutrition. International Journal on Recent Advancement in Biotechnology & Nanotechnology 4(1): 1 – 10.

Sukprasong, R., Tongpim, S. and Trongpanich, Y. (2018). Production of pyridoxal 5՛-phosphate and pyridoxine by Lactobacillus Pentosus L47I-A. Research Journal of Biotechnology 13(7): 16 – 23.