Extraction and Antioxidant Activity of Bioactive Compounds from Marine Microalgae Tetraselmis gracilis BIMS-PP017

Main Article Content

Apinya Rujakom
Sarunpat Chusuwan
Pongchanok Nualnat
Sunthorn Chooluck

Abstract

In this study, naturally occurring bioactive compounds from marine microalgae Tetraselmis gracilis BIMS-PP017 were investigated. The Bligh and Dyer method was used for lipid extraction. Crude extracts of T. gracilis were prepared using hot water, 95% ethyl alcohol and Dichloromethane/Methanol (2:1 v/v) as extraction solvent. Analysis of total phenolic compounds was carried out using Folin-Ciocalteu method and flavonoids were quantified by aluminum chloride colorimetric method. Results indicated that T. gracilis’s Dichloromethane/Methanol hydrolysate (pellet) exhibited the highest polyphenolic content (29.69 mg GAE/gDW) whereas hot water extract (pellet) had the most flavonoid content (95.67 mg QE/gDW). Antioxidant capacity of all extracts was analyzed by DPPH assay, ABTS assay and Potassium ferricyanide reducing power assay. The results revealed that crude ethanol extract (supernatant) showed highest antioxidant activity with DPPH assay (6.03 ± 0.22%nhibition) as well as ABTS assay (88.95 ± 1.44% inhibition). The crude ethanol extract (supernatant) showed the highest reducing ability (Vitamin C equivalent = 343 ± 13.99 µg/ml). The anti-tyrosinase activity was also studied using Dopachrome method. The results suggested that Dichloromethane/Methanol extract possesses the highest inhibitory effect (38.77 ± 0.90% inhibition). Results from this study suggested that T. gracilis could potentially be a valuable source for bio-ingredients for cosmeceutical and nutraceutical applications.

Article Details

How to Cite
Rujakom, A., Chusuwan, S., Nualnat, P., & Chooluck, S. (2024). Extraction and Antioxidant Activity of Bioactive Compounds from Marine Microalgae Tetraselmis gracilis BIMS-PP017. KKU Science Journal, 52(2), 219–234. https://doi.org/10.14456/kkuscij.2024.18
Section
Research Articles

References

Aminina, N.M., Karaulova, E.P., Vishnevskaya, T.I., Yakush, E.V., Kim, Y.K., Nam, K.H. and Son, K.T. (2020). Characteristics of Polyphenolic Content in Brown Algae of the Pacific Coast of Russia. Molecules 25(17): 3909. doi:10.3390/molecules25173909.

Andriopoulos, V., Gkioni, M.D., Koutra, E., Mastropetros, S.G., Lamari, F.N., Hatziantoniou, S. and Kornaros, M. (2022). Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants 11(7): 1320. doi: 10.3390/antiox11071320.

Androutsopoulou, C. and Makridis, P. (2023). Antibacterial Activity against Four Fish Pathogenic Bacteria of Twelve Microalgae Species Isolated from Lagoons in Western Greece. Microorganisms 11(6): 1396. doi: 10.3390/microorganisms11061396.

Bligh, E.G. and Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8): 911 - 917. doi:10.1139/o59-099.

Blois, M.S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature 181(4617): 1199 - 1200. doi: 10.1038/1811199a0.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248 - 254. doi: 10.1006/abio.1976.9999.

Cichonski, J. and Chrzanowski, G. (2022). Microalgae as a Source of Valuable Phenolic Compounds and Carotenoids. Molecules 27(24): 8852. doi: 10.3390/molecules27248852.

Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., Elsohly, M.A. and Khan, I.A. (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evidence-based complementary and alternative medicine : eCAM 2014: 253875. doi: 10.1155/2014/253875.

Choochote, W., Suklampoo, L. and Ochaikul, D. (2014). Evaluation of antioxidant capacities of green microalgae. Journal of Applied Phycology 26(1): 43 - 48. doi: 10.1007/s10811-013-0084-6.

Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., Patyukov, N. and Sukhikh, S. (2020). Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules 10(8): 1153. doi: 10.3390/biom10081153.

El Jemli, M., Kamal, R., Marmouzi, I., Zerrouki, A., Cherrah, Y. and Alaoui, K. (2016). Radical scavenging activity and ferric reducing ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Advances in Pharmacological Sciences 2016: 6392656 - 6392661. doi: 10.1155/2016/6392656.

Fattah, I.M.R., Noraini, M.Y., Mofijur, M., Silitonga, A.S., Badruddin, I.A., Khan, T.M.Y., Ong, H.C. and Mahlia, T.M.I. (2020). Lipid Extraction Maximization and Enzymatic Synthesis of Biodiesel from Microalgae. Applied Sciences 10(17): 6103.

Freile-Pelegrín, Y. and Robledo, D. (2013). Bioactive Phenolic Compounds from Algae. In: Hernández-Ledesma, B. and Herrero, M. (Eds.) Bioactive Compounds from Marine Foods: Plant and Animal Sources. Chichester: John Wiley & Sons Ltd. 113 – 129.

Fu, W., Nelson, D.R., Yi, Z., Xu, M., Khraiwesh, B., Jijakli, K. Chaiboonchoe, A., Alzahmi, A., Al-Khairy, D., Brynjolfsson, S. and Salehi-Ashtiani, K. (2017). Chapter 6 - Bioactive Compounds From Microalgae: Current Development and Prospects. In: Rahman, A-u. (Ed.) Studies in Natural Products Chemistry 54: 199 - 225. doi: 10.1016/B978-0-444-63929-5.00006-1.

Gupta, S.P., Siddiqi, N.J., Khan, H.A., Alrokayan, S.H., Alhomida, A.S., Singh, R.K., Verma, P.K., Kumar, S., Acharya, A. and Sharma, B. (2022). Phytochemical Profiling of Microalgae Euglena tuba and Its Anticancer Activity in Dalton's Lymphoma Cells. Frontiers in bioscience (Landmark edition) 27(4): 120. doi: 10.31083/j.fbl2704120.

Herrera, M. C., and de Castro, M. D. (2005). Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection. Journal of Chromatography A 1100(1): 1 - 7. doi: 10.1016/j.chroma.2005.09.021.

Hu, X., Yang, X.Q., Wu, Q., Li, L., Wu, Y., Chen, S., Li. R. and Ren, J. (2019). Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Molecules 24(16): 3004. doi: 10.3390/molecules24163004.

Ibáñez, E., Herrero, M., Mendiola, J. and Castro-Puyana, M. (2012). Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In: Hayes, M. (eds) Marine Bioactive Compounds. Boston: Springer MA. doi: 10.1007/978-1-4614-1247-2_2.

Imbs, T. and Zvyagintseva, T. (2018). Phlorotannins are Polyphenolic Metabolites of Brown Algae. Russian Journal of Marine Biology 44: 263 - 273. doi: 10.1134/S106307401804003X.

Ji, K., Kim, Y. and Kim, Y. (2021). A Study on the Tyrosinase Inhibitory and Antioxidant Effect of Microalgae Extracts. Microbiology and Biotechnology Letters 49: 167 - 173. doi: 10.48022/mbl.2012.12001.

Khan, M.I., Shin, J.H. and Kim, J.D. (2018). The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other products. Microbial Cell Factories 17(1): 36. doi: 10.1186/s12934-018-0879-x.

Kim, S.Y., Kwon, Y.M., Kim, K.W. and Kim, J.Y.H. (2021). Exploring the Potential of Nannochloropsis sp. Extract for Cosmeceutical Applications. Marine drugs 19(12): 690. doi: 10.3390/md19120690.

Mavrommatis, A., Tsiplakou, E., Zerva, A., Pantiora, P.D., Georgakis, N.D., Tsintzou, G.P., Madesis, P. and Labrou, N.E. (2023). Microalgae as a Sustainable Source of Antioxidants in Animal Nutrition, Health and Livestock Development. Antioxidants 12(10): 1882. doi: 10.3390/antiox12101882.

Menaa, F., Wijesinghe, U., Thiripuranathar, G., Althobaiti, N.A., Albalawi, A.E., Khan, B.A. and Menaa, B. (2021). Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Marine Drugs 19(9). doi: 10.3390/md19090484.

Ordoñez, A.A.L., Gomez, J.D., Vattuone, M.A. and lsla,M.I. (2006). Antioxidant activities of Sechium edule (Jacq.) Swartzextracts. Food Chemistry 97(3): 452 - 458. doi: 10.1016/j.foodchem.2005.05.024.

Payet, B., Sing, A.S.C. and Smadja, J. (2005). Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. Journal of Agricultural and Food Chemistry 53(26): 10074 - 10079. doi: 10.1021/jf051 7703.

Ren, X., Zhao, X., Turcotte, F., Deschênes, J.-S., Tremblay, R. and Jolicoeur, M. (2017). Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides. Microbial Cell Factories 16(1): 1 - 13. doi: 10.1186/s12934-017-0633-9.

Shen, Y., Yuan, W., Pei, Z.J., Wu, Q. and Mao, E. (2009). Microalgae Mass Production Methods. Transactions of the ASABE 52: 1275 - 1287. doi: 10.13031/2013.27771.

Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymology 299: 152 – 178.

Sundaram, T., Rajendran, S., Gnanasekaran, L., Rachmadona, N., Jiang, J.J., Khoo, K.S. and Show, P.L. (2023). Bioengineering strategies of microalgae biomass for biofuel production: recent advancement and insight. Bioengineered 14(1): 2252228. doi: 10.1080/21655979.2023.2252228.

Thiyagarasaiyar, K., Goh, B-H., Jeon, Y-J. and Yow, Y-Y. (2020). Algae metabolites in cosmeceutical: an overview of current applications and challenges. Marine Drugs 18(6): 323.

Zhou, L., Duan, X., Li, K., Hill, D.R.A., Martin, G.J.O. and Suleria, H.A.R. (2023). Extraction and Characterization of Bioactive Compounds from Diverse Marine Microalgae and Their Potential Antioxidant Activities. Chemistry & Biodiversity 20(11): e202300602. doi: 10.1002/cbdv.202300602.

Zhou, L., Li, K., Duan, X., Hill, D., Barrow, C., Dunshea, F., Martin, G. and Suleria, H. (2022). Bioactive compounds in microalgae and their potential health benefits. Food Bioscience 49: 101932. doi: 10.1016/j.fbio.2022.101932.