Facial Skincare Product Recommendation System for People with Facial Skin Problems
Main Article Content
Abstract
The objective of this study is to develop a product recommendation framework for individuals facial skin problems. The system's architecture consisted of four integral components: 1) collecting data on 5,143 skincare products, 2) provide recommendations for facial skin care products using the principle of Content Based Filtering. 3) product information retrieval using information retrieval principles, and 4) an intuitive user interface. The empirical study showed a commendable efficacy in product recommendation, with an average accuracy of 0.876 and an F-Measure value of 0.686 in assessing users' skin conditions. Similarly, the product search mechanism demonstrates notable precision, averaging 0.720 in precision and F-Measure of 0.636, indicative of satisfactory system usability and user interface engagement. The computed average satisfaction ratings of 4.397 and 4.399, respectively, corroborate the favorable user satisfaction levels. This research not only contributes to the practical domain of skincare but also to the academic research on personalized recommendation systems and information retrieval methodologies.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรวรรณ หนูแดง และเอกรัฐ รัฐกาญจน์. (2564). การศึกษาวิธีการกรองแบบร่วมกันสำหรับการแนะนำเมนูอาหาร. สารนิพนธ์วิทยาศาสตรปริญญามหาบัณฑิต, สถาบันบัณฑิตพัฒนบริหารศาสตร์. กรุงเทพฯ.
นิภาภรณ์ พันธ์นาม และวราภรณ์ วิยานนท์. (2563). ระบบแนะนำสินค้าอาหารโดยใช้ระบบแนะนำแบบผสมผสาน Food Recommendation System Using A Hybrid Recommendation Method. สารนิพนธ์ปริญญาวิทยาศาสตรมหาบัณฑิต, มหาวิทยาลัยศรีนครินทรวิโรฒ. กรุงเทพฯ.
พิจิตรา จอมศรี. (2560). การเพิ่มประสิทธิภาพระบบเครือข่ายสังคมด้านรูปภาพด้วยเทคนิคการจัดอันดับใหม่แบบร่วม. Veridian E-Journal, Science and Technology Silpakorn University 4(3): 21 - 35.
Badouch, M. and Boutaounte, M. (2023). Personalized Travel Recommendation Systems: A study of Machine learning approaches in tourism. Journal of Artificial Intelligence Machine Learning and Neural Network. 33: 35 – 45. doi: 10.55529/jaimlnn.33.35.45.
Gupta, V., Dixit, A. and Sethi, S. (2023). An Improved Sentence Embeddings based Information Retrieval Technique using Query Reformulation. In: 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT). Gharuan, India 299 - 304.
Hashim, S.Z.M. and Waden, J. (2023). Content-based filtering algorithm in social media. Wasit Journal of Computer and Mathematics Science 2(1): 14 – 17. doi: 10.31185/wjcm.112.
Lee, G., Jiang, X. and Parde, N. (2023). A Content-based Skincare Product Recommendation System. In: 2023 International Conference on Machine Learning and Applications (ICMLA), Jacksonville, FL, USA. 2039 - 2043. doi: 10.1109/ICMLA58977.2023.00308.
Naidu, G., Zuva, T. and Sibanda, E.M. (2023). A Review of Evaluation Metrics in Machine Learning Algorithms. In: Silhavy, R., Silhavy, P. (eds) Artificial Intelligence Application in Networks and Systems. CSOC 2023. Lecture Notes in Networks and Systems 724: 15 – 25. doi: 10.1007/978-3-031-35314-7_2.
Yen, D.C. and Davis, W.S. (2019). User Interface Design., The Information System Consultant's Handbook. USA: CRC Press. 375 – 385. doi: 10.1201/9781420049107-48.