Anti-melanogenic Activity of Tecoma stans (L.) Juss. ex Kunth Flower Extract in B16F10 Melanoma Cell Line

Main Article Content

Preeda Chanthapong
Patthakiat Malakhan
Paweena Rangsrisak
Wuttipong Mahakham

Abstract

Yellow bells (Tecoma stans (L.) Juss. ex Kunth) is a widespread ornamental plant extensively cultivated in tropical regions, including Thailand. It has potential therapeutic properties due to the presence of various bioactive compounds with many biological effects, such as anticancer, antidiabetic, antibacterial, and antioxidative activities. However, anti-melanogenic and anti-tyrosinase activities of yellow bell plant extract have not been previously explored. In this study, cytotoxicity of ethyl acetate extract of yellow bell flower towards murine B16F10 skin melanoma cell line was assessed using MTT assay. The flower extracts were also tested for their inhibitory effect on melanogenesis in B16F10 cells compared with kojic acid. Tyrosinase inhibition activity was evaluated using the dopachrome method with L-tyrosine as a substrate. After treatment with 0.05 – 3.2 mg/ml yellow bell flower extracts for 48 h, the viability of B16F10 cells was found to be higher than the 90% viability at 0.05 – 0.8 mg/ml, indicating that these concentrations showed no significant toxicity as compared with the control group. The yellow flower extract at 0.8 mg/ml also effectively decreased both extracellular and intracellular melanin contents in B16F10 cells and could inhibit mushroom tyrosinase activity in vitro by 60% compared with the control. This work has shown for the first time that yellow bell flower extract have anti-melanogenic properties without causing cytotoxicity. Thus, yellow bell flower extract can potentially be used as a source for the development of skin whitening agents in the future.

Article Details

How to Cite
Chanthapong, P., Malakhan, P., Rangsrisak, P., & Mahakham, W. (2024). Anti-melanogenic Activity of Tecoma stans (L.) Juss. ex Kunth Flower Extract in B16F10 Melanoma Cell Line. KKU Science Journal, 52(2), 245–261. https://doi.org/10.14456/kkuscij.2024.20
Section
Research Articles
Author Biography

Wuttipong Mahakham, Department of Biology, Faculty of Science, Khon Kaen University, Thailand

Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Thailand

References

Alam, M.B., Ahmed, A., Motin, M.A., Kim, S. and Lee, S.H. (2018). Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and protea-somal degradation of tyrosinase. Scientific Reports 8: 13928. doi: 10.1038/s41598-018-32303-7.

Al-Azzawi, A.M., Al-Khateeb, E., Al-Sameraei, K. and Al-Juboori, A.G. (2012). Antibacterial activity and the histopathological study of crude extracts and isolated tecomine from Tecoma stans Bignoniaceae in Iraq. Pharmacognosy Research 4: 37 - 43. doi: 10.4103/0974-8490.91033.

Anand, M. and Basavaraju, R. (2021). A review on phytochemistry and pharmacological uses of Tecoma stans (L.) Juss. ex Kunth. Journal of Ethnopharmacology 265: 113270. doi: 10.1016/j.jep.2020.11327.

Ando, H., Niki, Y., Ito, M., Akiyama, K., Matsui, M.S., Yarosh, D.B. and Ichihashi, M. (2012). Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. Journal of Investigative Dermatology 132: 1222 - 1229. doi: 10.1038/jid.2011.413.

Bakr, R.O., Fayed, M.A.A., Salem, M.A. and Hussein, A.S. (2019). Tecoma stans: alkaloid profile and antimicrobial activity. Journal of Pharmacy and Bioallied Sciences 11(4): 341–347. doi: 10.4103/jpbs.JPBS_79_19.

Buchert, J., Selinheimo, E., Kruus, K., Mattinen, M.L., Lantto, R. and Autio, K. (2007). Using crosslinking enzymes to improve textural and other properties of food. In: Rastall, R. (ed.). Novel Enzyme Technology for Food Applications. Cambridge: Woodhead Publishing. pp. 101 – 139.

Chang, T.S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences 10: 2440 - 2475. doi: 10.3390/ijms10062440.

Chelly, S., Chelly, M., Occhiuto, C., Cimio, F., Cristani, M., Saija, A., Molonia, M.S., Ruberto, G., D’Angelo, V., Germano, M.P., Siracusa, L., Bouazia-Ketata, H. and Speciale, A. (2021). Evaluation of antioxidant, anti-inflammatory and antityrosinase potential of extracts from different aerial parts of Rhanterium suaveolens from Tunisia. Chemistry & Biodiversity 18: e2100316. doi: 10.1002/cbdv.202100316.

El-Nashar, H.A.S., El-Din, M.I.G., Hritcu, L. and Eldahshan, O.A. (2021). Insights on the inhibitory powder of flavonoids on tyrosinase activity: a survey from 2016 to 2021. Molecules 26: 7546. doi: 10.3390/molecules26247546.

Freshney, R.I. (2010). Culture of animal cells: a manual of basic techniques and specialized applications. 6th ed. New Jersey: John Wiley & Sons, Inc.

Galvao, J., Davis, B., Tilley, M., Normando, E., Duchen, M.R. and Cordeiro, M.R. (2014). Unexpected low-dose toxicity of the universal solvent DMSO. FASEB Journal 28: 1317-1330. doi: 10.1096/fj.13-235440.

Goncalves, T.P.R., Parreira, A.G., Zanucio, V.S.S, Farias, K.S., Silva, D.B. and Lima, L.A.R.S. (2022). Antibacterial and antioxidant properties of flowers from Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae). South African Journal of Botany 144: 156 - 165. doi: 10.1016/j.sajb.2021.08.028.

Güven, Z.B., Saracoglu, I., Nagatsu, A., Yilmaz, M.A. and Basaran, A.A. (2023). Anti-tyrosinase and antimelanogenic effect of cinnamic acid derivatives from Prunus mahaleb L.: Phenolic composition, isolation, identification and inhibitory activity. Journal of Ethnopharmacology 310: 116378. doi: 10.1016/j.jep.2023.116378.

Hajighasemi, F. and Tajik, S. (2017). Assessment of cytotoxicity of dimethyl sulfoxide in human hematopoietic tumor cell lines. Iranian Journal of Blood and Cancer 9: 48 - 53.

Junlatat, J., Fangkrathok, N. and Sripanidkulchai, B. (2018). Antioxidative and melanin productioninhibitory effects of Syzygium cumini extracts. Songklanakarin Journal of Science and Technology 40 (5): 1136 - 1143.

Kim, H.D., Choi, H., Abekura, F., Park, J.Y., Yang, W.S., Yang, S.H. and Kim, C.H. (2023). Naturally-occurring tyrosinase inhibitors classified by enzyme kinetics and copper chelation. International Journal of Molecular Sciences 24: 8226. doi: 10.3390/ijms24098226.

Kim, M., Shin, S., Lee, J.A., Park, D., Lee, J. and Jung, E. (2015). Inhibition of melanogenesis by Gaillardia aristata flower extract. BMC Complementary and Alternative Medicine 15: 449. doi: 10.1186/s12906-015-0972-1.

Kooltheat, N., Tedasen, A., Yamasaki, K. and Chatatikun, M. (2023). Melanogenesis inhibitory activity, chemical components and molecular docking studies of Prunus cerasoides Buch.-Ham. D. Don. flowers. Journal of Evidence-Based Integrative Medicine doi: 10.1177/2515690X231152928.

Krobthong, S., Yingchutrakul, Y., Sittisaree, W., Tulyananda, T., Samutrtai, P., Choowongkomon, K. and Lao-on, U. (2022). Evaluation of potential anti-metastatic and antioxidative abilities of natural peptides derived from Tecoma stans (L.) Juss. ex Kunth in A549 cells. PeerJ 10: e13693. doi: 10.7717/peerj.13693.

Larbie, C., Nyarkoh, C.O. and Adjei, C.O. (2019). Phytochemical and safety evaluation of hydroethanolic leaf extract of Tecoma stans (L.) Juss. ex Kunth. Evidence-Based Complementary and Alternative Medicine 7417624. doi: 10.1155/2019/7417624.

Lee, C.J., Park, S.K., Kang, J.Y., Kim, J.M., Yoo, S.K., Han, H.J., Kim, D.O. and Heo, H.J. (2019). Melanogenesis regulatory activity of the ethyl acetate fraction from Arctium lappa L. leaf on α-MSH–induced B16/F10 melanoma cells. Industrial Crops and Products 135: 111581. doi: 10.1016/j.indcrop.2019.111581.

Limtrakul, P., Yodkeeree, S., Thippraphan, P., Punfa, W. and Srisomboon, J. (2016). Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complementary Medicine and Therapies 16: 497. doi: 10.1186/s12906-016-1484-3.

Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., Sarmah, A.K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of The Total Environment 573: 1089 - 1102.

Marzouk, M.S.A., Gamal-Eldeen, A.M., Mohamed, M.A. and El-Sayed, M.M. (2006). Antioxidant and anti-proliferative active constituents of Tecoma stans against tumor cell lines. Natural Product Communications 1: 735 - 743.

Narayanan, M., Gothandapani, A., Venugopalan, R., Rethinam, M., Pitchai, S., Alahmadi, T.A., Almoallim, H.S., Kandasamy, S. and Brindhadevi, K. (2023). Antioxidant and anticancer potential of ethyl acetate extract of bark and flower of Tecoma stans (Linn) and in silico studies on phytoligands against Bcl 2 and VEGFR2 factors. Environmental Research 231: 116112. doi: 10.1016/j.envres.2023.116112.

Neto, C.F.G., do Nascimento, P., da Silveira, C.V., de Mattos, A.B.N. and Bertol, C.D. (2022). Natural sources of melanogenic inhibitors: A systematic review. International Journal of Cosmetic Science 44: 143 - 153. doi: 10.1111/ics.12763.

Nguyen, N. and Fisher, D.E. (2018). MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell & Melanoma Research 32: 224 - 236. doi: 10.1111/pcmr.12726.

Nishi, K., Mori, M., Nakayama, D., Sato, J., Kim, I.H., Kim, M., Kim, S. and Sugahara, T. (2020). Anti-melanogenic activity of methanolic extract from leaves of Sorbaria sorbifolia var. stellipila Max. on α-MSH-stimulated B16 melanoma 4A5 cells. Biomedical Dermatology 4: 7. doi: 10.1186/s41702-020-0061-z.

Panzella, L. and Napolitano, A. (2019). Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics 6: 57. doi: 10.3390/cosmetics6040057.

Petrillo, A.D., González-Paramás, A.M., Era, B., Medda, R., Pintus, F., Santos-Buelga, C. and Fais, A. (2016). Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complementary Alternative Medicine 16: 453. doi: 10.1186/s12906-016-1442-0.

Pillaiyar, T., Manickam, M. and Namasivayam, V. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 32: 403 - 425. doi: 10.1080/14756366.2016.1256882.

Rangkadilok, N., Sitthimonchai, S., Worasuttayangkurn, L., Mahidol, C., Ruchirawat, M. and Satayavivad, J. (2007). Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food and Chemical Toxicology 42: 328-336. doi: 10.1016/j.fct.2006.08.022.

Riha, M., Karlickova, J., Filipsky, T., Jahodar, L., Hrdina, R. and Mladenka, P. (2014). In vitro copper-chelating properties of flavonoids. Free Radical Biology and Medicine 74: S46. doi: 10.1016/j.freerad biomed.2014.10.807.

Silva, A.L., Azevedo, L.S., Goncalves, T.P.R., Coimbra, M.C., Siqueira, E.P., Alves, S.N. and Lima, A.R.S. (2023). Larvicidal activity of hexane extractm fatty acids, and methyl esters from Tecoma stans pericarps against Culex quinquefasciatus. Natural Product Research 37: 4227 - 4231.

Vallisuta, O., Nukookkarn, V., Mitrevej, A., Sarista, N., Leelapornpisid, P., Phrutivorpongkul, A. and Sinchaipanid, N. (2014). In vitro studies on the cytotoxicity, and elastase and tyrosinase inhibitory activities of marigold (Tagetes erecta L.) flower extracts. Experimental and Therapeutic Medicine 7: 246 - 250. doi: 10.3892/etm.2013.1373.

Zolghadri, S., Bahrami, A., Khan, M.T.H., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F. and Saboury, A.A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 34: 279 - 309. doi: 10.1080/14756366.2018.1545767.