Determinant and Adjoint Matrices of Matrices Whose Members are Polynomial Sequences

Main Article Content

Niroot Meekoed
Amphaphon Khanaphaeng
Phuttithorn Putrit
Chanakan Promin
Chonthicha Sonyoo
Kwanwipha Ninchun

Abstract

In this research, we study the determinant and adjoint matrices of a matrices whose n+2-row (column) entries are polynomial sequences of degree n. We obtain that the determinant and the sum of the entries in each column (row) of the adjoint matrices are zero.

Article Details

How to Cite
Meekoed, N., Khanaphaeng, A., Putrit, P., Promin, C., Sonyoo, C., & Ninchun, K. (2023). Determinant and Adjoint Matrices of Matrices Whose Members are Polynomial Sequences. KKU Science Journal, 51(2), 193–204. https://doi.org/10.14456/kkuscij.2023.17
Section
Research Articles

References

Bahsi, M. and Solak, S. (2010). On the circulant matrices with arithmetic sequence. International Journal of Contemporary Mathematical Sciences 5(25): 1213 – 1222.

Hajrizaj, D. (2009). New Method to Compute the Determinant of a 3x3 Matrix. International Journal of Algebra 3(5): 211 – 219.

Leon, S.J. (2015). Linear Algebra with Applications. 9th ed. Boston: Pearson.

Mattingly, R.B. (2000). Even Order Regular Magic Squares Are Singular. The American Mathematical Monthly 107(9): 777 – 782.

Thirumurugan, K. (2014). A New Method to Compute the Adjoint and Inverse of a 3 × 3 non–singular Matrices. International Journal of Mathematics and Statistics Invention 2(10): 52 – 55.

Yandl, A.L. and Swenson, C. (2012). A Class of Matrices with Zero Determinant. Mathematics Magazine 85(2): 126 – 130.