Formula for Finding the Number of Triangles with Integer Side Lengths

Main Article Content

Niroot Meekoed
Amphaphon Khanaphaeng
Chanakan Promin
Kwanwipha Ninchun
Phuttithorn Putrit

Abstract

In this paper, we establish the formula for finding the number of triangles with integer side lengths that have given the boundary of each side length.

Article Details

How to Cite
Meekoed, N. ., Khanaphaeng, A. ., Promin, C., Ninchun, K. ., & Putrit, P. . (2022). Formula for Finding the Number of Triangles with Integer Side Lengths. KKU Science Journal, 50(2), 136–145. Retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/250447
Section
Research Articles

References

East, J. and Niles, R. (2019). Integer triangles of given perimeter : a new approach via group theory. American Mathematical Monthly 126(8): 735–739.

Fitzpatrick, R. (2005). Euclid's Elements in Greek : Vol. I : Books 1–4. North Carolina: Lulu Press. pp. 49.

Hirschhorn, M.D. (2000). Triangles with integer sides, revisited. Mathematics Magazine 73(1): 53–56.

Meekoed, N. (2011). The Number of General Triangle with Longest Side Less Than or Equal to n. KKU Science Journal 39(4): 696–700.

Nicholas, K. and Bennet, M. (1998). Counting integer triangles. Mathematics Magazine 71(4): 291–295.