Electrochemical Mechanism of V2O5 Film on Storing Zn2+ Ions in Zn-Ion Battery System

Main Article Content

Sureerat Triosod
Authit Phakkhawan
Pawinee Klangtakai
Samuk Pimampang

Abstract

In this research, we characterized the morphology of V2O5 particles purchased from Sigma- Aldrich by scanning electron microscopy (SEM) . The V2O5 particles have a rod- like structure with a length and width of about 1.05 µm and 0.28 µm, respectively. X- ray diffraction spectrum of V2O5 powder indicates the orthorhombic V2O5 structure. The electrochemical property of the V2O5 film coated on Ni foam was tested by cyclic voltammetry (CV), and the oxidation and reduction peaks were clearly observed. The capacity of the Zn-ion battery based on the V2O5 cathode is 47.86 mAh g -1 under the current density of 50 mA g -1. EDX mapping analysis suggests that the charging/discharging processes would extract/insert the Zn2+ out/in the V2O5 film, respectively.

Article Details

How to Cite
Triosod, S. ., Phakkhawan, A. ., Klangtakai, P. ., & Pimampang, S. (2022). Electrochemical Mechanism of V2O5 Film on Storing Zn2+ Ions in Zn-Ion Battery System. KKU Science Journal, 50(1), 83–92. retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/250301
Section
Research Articles

References

Alfaruqi, M.H., Mathew, V., Song, J., Kim, S., Islam, S., Pham, D.T., Jo, J., Kim, S., Baboo, J.P., Xiu, Z., Lee, K.S., Sun, Y.K. and Kim, J. (2017). Electrochemical Zinc Interaction in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chemistry of Materials 29(4): 1684–1694.

Ding, J., Du, Z., Gu, L., Li,B., Wang, L., Wang, S., Gong, Y. and Yang, S. (2018). Ultrafast Zn2+Intercalation and Deintercalation in Vanadium Dioxide. Advanced Materials 30(26): (1-6).

Hu, P., Yan, M, Zhu, T., Wang, X., Wei, X., Li, J., Zhou, L., Li, Z., Chen, L. and Mai, L. (2017). Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. ACS Applied Materials & Interfaces 9(49): 42717–42722.

Hu, P., Zhu, T., Wang, X., Wei, X., Yan, M., Li, J.,Luo, W., Yang, W., Zhang, W., Zhou, L., Zhou, Z. and Mai, L. (2018). Highly Durable Na2V6O16 1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery.Nano Letters 18(3): 1758-1763.

Jiang, H., Zhang, Y., Zhenghui, J., Xu, L., Zheng, J., Gao, Z., Hu, T. and Meng, C. (2019).Facile Hydrothermal Synthesis and Electrochemical Properties of (NH4)2V10O25·8H2O Nanobelts for High-Performance Aqueous Zinc Ion Batteries. Electrochimica Acta 332: 1-24.

Jiao, T., Yang, Q., Wu, S., Wang, Z., Chen, D., Shen, D., Liu, B., Chend, J., Li, H., Ma, L., Zhi, C. and Zhang, W. (2020). Binder-Free Hierarchical VS2 Electrodes for High Performance Aqueous Zn Ion Batteries towards Commercial Level Mass Loading.Journal of Materials Chemistry A 7(27): 16330-16338.

Kim, H.J., Krishna, T., Zeb, K., Rajangam, V., Gopi, C.V.V.M., Sambasivam. S., Raghavendra, K.V.G. and Obaidat, I.M. (2020). A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques. Electronics 9(7): 1-44.

Konarov, A., Voronina, A., Jo, J.H., Bakenov, Z., Sun Y.K. and Myung. S.T. (2018). Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters 3(10): 2620-2640.

Li, N., Li, G., Li, G., Yang, H., Qin, G., Sun, X., Li, F. and Cheng, H.M. (2020). Bi-Cation Electrolyte for a 1.7 V Aqueous Zn Ion Battery. ACS Applied Materials & Interface 12(12): 13790−13796.

Li, Y., Wang, S., Salvador, J.R., Wu, J., Liu, J., Yang, W., Yang, J., Zhang, W., Liu, J., and Yang, J. (2019). Reaction Mechanisms for Long-Life Rechargeable Zn/MnO2 Batteries. Chemistry of Materials 31(6): 2036-2047.

Li, Z., Ganapathy, S., Xu, Y., Zhou, Z., Sarilar, M. and Wagemaker, M. (2019). Mechanistic Insight into the Electrochemical Performance of Zn/VO2 Batteries with an Aqueous ZnSO4 Electrolyte Advanced Science News 9(22): (1-10).

Qin, H., Chen, L., Wang, L., Chen, X. and Zhanhong Yang. (2019). V2O5 Hollow Spheres as High Rate and Long Life Cathode for Aqueous Rechargeable Zinc Ion Batteries. Electrochimica Acta 306: 307-316.

Qiu, N., Yang, Z., Wang, Y., Zhu, Y. and Liu, W. (2020). A High-Power and Long-Life Aqueous Rechargeable Zn-Ion Battery Based on Hierarchically Porous Sodium Vanadate. Chemical Communications 64: 1-7.

Wu, X., Xiang, Y., Peng, Q., Wu, X., Li, Y., Tang, F., Song, R., Liu, Z., He, Z. and Wu, X. (2017). A Green-Low-Cost Rechargeable Aqueous Zinc-Ion Battery Using Hollow Porous Spinel ZnMn2O4 as the Cathode Material. Journal of Materials Chemistry A 5(34): 17990-17997.

Xu, L., Zhang,Y., Jiang, H., Zheng, J., Dong, X., Hu, T. and Meng, C. (2020). Facile Hydrothermal Synthesis and Electrochemical Properties of (NH4)2V6O16 Nanobelts for Aqueous Rechargeable Zinc Ion Batteries.Colloids and Surface A.: Physicochemical and Engineering Aspects 593: (1-9).

Yuksel, R., Buyukcakir, O., Won, K.S., and Ruoff, R.S. (2020). Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries. Advanced Energy Materials 10(16): 1904215.

Zhang, N., Cheng, F., Liu, J., Wang, L., Long, X.,Li, F. and Chen, J. (2017). Rechargeable Aqueous Zinc-Manganese Dioxide Batteries with High Energy and Power Densities. Nature Communications 8(405): 1-9.

Zhang, N., Dong, Y., Jia, M., Bian, X., Wang, Y., Qui, M., Xu, J., Liu, Y., Jiao, L. and Cheng, F. (2018). Rechargeable Aqueous Zn-V2O5 Battery with High Energy Density and Long Cycle Life. ACS Energy Letters 3(6): 1366-1372.

Zhang, Y., Deng, S., Li, Y., Liu, B., Pan, G., Liu, Q., Wang, X., Xia, X. and Tu, J. (2020). Anchoring MnO2 on Nitrogen-Doped Porous Carbon Nanosheets as Flexible Arrays Cathodes for Advanced Rechargeable Zn-MnO2 Batteries. Energy Storage Materials 29: 52-59.