Na-ion Batteries: A Promising Energy Storage Technology of the Future

Main Article Content

Pornjira Phuenhinlad
Yaowaret Phothikul
Warin Aroonyadaj
Kanyanat Riebngern
Nitchakan Khrueaweera
Saruttaya Jenjaiwit
Wuttigorn Keadnok
Pratumwan Sattapol
Jirawat Saiyod
Thitimaporn Krasae
Kittipong Saothong
Nattha Chaiyapo
Nonglak Meethong

Abstract

Lithium-ion batteries (LIBs) have received great achievements as a commercial energy storage device since 1990 due to their high energy density. However, the limited quantity and uneven distribution of lithium resources are critical problems that lead to their high cost. Therefore, new research directions have turned toward more earth-abundant, low-cost, and sustainable replacements for LIBs. Sodium-ion batteries (NIBs) have been extensively investigated as a promising alternative candidate due to their low cost and environmentally friendly with adequate resources. Although there are currently various companies producing the NIB cell prototypes, NIB is still in its infancy stage compared to the state-of-art LIB. The development of this technology has required insights into materials research to produce and optimize anodes, cathodes, and electrolytes for NIBs towards practical applications in the commercial markets.

Article Details

How to Cite
Phuenhinlad, P. ., Phothikul, . Y. ., Aroonyadaj, W. ., Riebngern, K., Khrueaweera, N. ., Jenjaiwit, S. ., Keadnok, W., Sattapol, P. ., Saiyod, J. ., Krasae, T. ., Saothong, K., Chaiyapo, N. ., & Meethong, N. . (2021). Na-ion Batteries: A Promising Energy Storage Technology of the Future. KKU Science Journal, 49(3), 231–245. retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/250272
Section
Review Articles
Author Biography

Nonglak Meethong, Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Meuang, Khon Kaen, 40002 Thailand

Institute of Nanomaterials Research and Innovation for Energy, Khon Kaen University, Meuang, Khon Kaen, 40002 Thailand

References

นงลักษณ์ มีทอง. (2554). แบตเตอรี่ชนิดใหม่เพื่ออนาคต: แบตเตอรี่ชนิดโซเดียมไอออน. วารสารวิทยาศาสตร์ มข. 39(4): 598-607.

Alvarado, J., Ma, C., Wang, S., Nguyen, K., Kodur, M., and Meng, Y. S. (2017). Improvement of the Cathode Electrolyte Interphase on P2- Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition. ACS Applied Materials and Interfaces 9: 26518−26530.

ARPA-E. (2020). DOE Announces $24 Million for Commercial Scaling of Battery and Methane Detection Technologies. Retrieved November 23, 2020, from https://arpa-e.energy.gov/news-and-media/press -releases/doe-announces-24-million-commercial-scal-ing-battery-and-methane.

Bianchini, M., Gonzalo, E., Drewett, N. E., Ortiz-Vitoriano, N., del Amo, J. M. L., Bonilla, F. J., Acebedo, B., and Rojo, T. (2018). Layered P2-O3 sodium-ion cathodes derived from earth abundant elements. Journal of Materials Chemistry 6(8): 3552-3559.

Chen, M., Liu, Q., Wang, S., Wang, E., Guo, X., and Chou, S. (2019). High-Abundance and Low-Cost Metal-Based Cathode Materials for Sodium-Ion Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials 9(14): 1803609.

Cui, J., Yao, J., and Kim, K. (2017). Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Materials 7: 64-114.

Edelstein, S. (2015). Faradion Electric Bike: Prototype Powered by Sodium-Ion Batteries. Retrieved November 26, 2020, from https://www.greencarreports.com /news/10984 34_faradion-electric-bike prototype-powered-by-sodium-ion- batteries.

Eshetu, G. G., Elia, G. A., Armand, M., Forsyth, M., Komaba, S., Rojo, T., and Passerini, S. (2020). Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives. Advanced Energy Materials 10(20): 2000093.

Goikolea, E., Palomares, V., Wang, S., Ruiz de Larramendi, I., Guo, X., Wang, G., and Rojo, T. (2020). Na-Ion Batteries-Approaching Old and New Challenges. Advanced Energy Materials 10(44): 202002055.

Goktas, M., Bolli, C., Buchheim, J., Berg, E. J., Novak, P., Bonilla, F., Rojo, T., Komaba, S., Kubota, K., and Adelhelm, P. (2019). Stable and Unstable Diglyme-Based Electrolytes for Batteries with Sodium or Graphite as Electrode. ACS Applied Materials and Interfaces 11(36): 32844-32855.

Goni, A., Iturrondobeitia, A., de Muro, I. G., Lezama, L., and Rojo, T. (2017). Na2.5Fe1.75(SO4)3/Ketjen/rGO:An advanced cathode composite for sodium ion batteries. Journal of Power Sources 369: 95-102.

Green Car Congress. (2015). French researchers develop sodium-ion battery in 18650 format; performance comparable to Li-ion. Retrieved November 26, 2020, from https:// www.greencarcongress.com/2015 /11/20151127-rs2e. html.

Hall, N., Boulineau, S., Croguennec, L., Launois, S., Masquelier, C., and Simonin, L. (2017). WO 2017/064189 A1.

Han, J., Zhang, H., Varzi, A., and Passerini, S. (2018). Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries. Chemsuschem 11(21): 3704-3707.

Hou, H., Banks, C. E., Jing, M., Zhang, Y., and Ji, X. (2015). Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. Advanced Materials 27(47): 7861-7866.

Jache, B., and Adelhelm, P. (2014). Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena. Angewandte Chemie 53(38): 10169-10173.

Katcho, N. A., Carrasco, J., Saurel, D., Gonzalo, E., Han, M., Aguesse, F., and Rojo, T. (2016). Origins of Bistability and Na Ion Mobility Difference in P2- and O3-Na2/3Fe2/3Mn1/3O2 Cathode Polymorphs. Advanced Energy Materials 7(1): 1601477.

Kim, J., Kim, H., and Kang, K. (2018). Conversion-Based Cathode Materials for Rechargeable Sodium Batteries. Advanced Energy Materials 8(17): 1702646.

Kubota, K., Kumakura, S., Yoda, Y., Kuroki, K., and Komaba, S. (2018). Electrochemistry and Solid-State Chemistry of NaMeO2 (Me = 3d Transition Metals). Advanced Energy Materials 8(17): 1703415.

Kuze, S., Kageura, J., Matsumoto, S., Nakayama, T., Makidera, M., Saka, M., Yamaguchi, T., Yamamoto, T., and Nakane, K. (2013). Development of a Sodium Ion Secondary Battery. Retrieved November 25, 2020, from https://www.sumitomo-chem.co. jp/english/rd/report/ files/docs/2013E_3. pdf.

Lee, B., Paek, E., Mitlin, D., and Lee, S. W. (2019). Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews 119(8): 5416-5460.

Lee, J. (2014). Low Cost Sodium-ion Battery to Enable Grid Scale Energy Storage: Prussian Blue-Derived Cathode and Complete Battery Integration. Retrieved November 24, 2020, from https://www.sandia.gov/ess-ssl/docs/pr_ conferences/2014/Wednesday/PosterSession4/10_Lee_JJ_Low-Cost_Sodium-ion _poster.pdf.

Lee, M., Hong, J., Lopez, J., Sun, Y., Feng, F., Lim, K., Chueh, W. C., Toney, M. F., Cui, Y., and Bao, Z. (2017). High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nature Energy 2: 861–868.

Li, A. H., Feng, Z. Y., Sun, Y., Shang, L. M., and Xu, L. Q. (2017). Porous organic polymer/RGO composite as high performance cathode for half and full sodium ion batteries. Journal of Power Sources 343: 424-430.

Li, Y., Yang, Y., Lu, Y., Zhou, Q., Qi, X. G., Meng, Q., Rong, X., Chen, L., and Hu, Y.-S. (2020). Ultralow-Concentration Electrolyte for Na-Ion Batteries. ACS Energy Letters 5(4): 1156-1158.

Lu, Y., Lu, Y., Niu, Z., and Chen, J. (2018). Graphene-Based Nanomaterials for Sodium-Ion Batteries. Advanced Energy Materials 1702469.

Masquelier, C., and Croguennec, L. (2013). Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem. Rev., 113, 6552−6591.

Muñoz-Márquez, M. Á., Saurel, D., Gómez-Cámer, J. L., Casas-Cabanas, M., Castillo-Martínez, E., and Rojo, T. (2017). Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation. Advanced Energy Materials 1700463.

Nakamoto, K., Kano, Y., Kitajou, A., and Okada, S. (2016). Electrolyte dependence of the performance of a Na2FeP2O7//NaTi2(PO4)3 rechargeable aqueous sodium-ion battery. Journal of Power Sources 327: 327-332.

Noi, K., Suzuki, K., Tanibata, N., Hayashi, A., and Tatsumisago, M. (2018). Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive. Journal of the American Ceramic Society 101(3): 1255-1265.

Qi, Y. R., Mu, L. Q., Zhao, J. M., Hu, Y. S., Liu, H. Z., and Dai, S. (2015). Superior Na-Storage Performance of Low-Temperature-Synthesized Na-3(VO1-xPO4)(2)F1+2x (0 <= x <= 1) Nanoparticles for Na-Ion Batteries. Angewandte Chemie 54(34): 9911-9916.

Qiao, L., Judez, X., Rojo, T., Armand, M., and Zhang, H. (2020). Review—Polymer Electrolytes for Sodium Batteries. Journal of the Electrochemical Society 167: 070534.

Qin, D., Liu, Z., Zhao, Y., Xu, G., Zhang, F., and Zhang, X. (2018). A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon 130: 664-671.

Rong, X., Lu, Y., Qi, X., Zhou, Q., Kong, W., Tang, K., Chen, L., and Hu, Y. (2020). Na-ion batteries: From fundamental research to engineering exploration. Energy Storage Science and Technology 9(2): 515-522.

Saurel, D., Orayech, B., Xiao, B., Carriazo, D., Li, X., and Rojo, T. (2018). From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium-Ion Batteries through Carbon Anode Optimization. Advanced Energy Materials 1703268.

Sayers, R., Barker, R., and Heap, R. (2015). WO 2015/177544 A1.

Sun, B., Pompe, C., Dongmo, S., Zhang, J., Kretschmer, K., Schröder, D., Janek, J., and Wang, G. (2018). Challenges for Developing Rechargeable Room-Temperature Sodium Oxygen Batteries. Advanced Materials Technologies 3: 1800110.

Suo, L. M., Borodin, O., Wang, Y. S., Rong, X. H., Sun, W., Fan, X. L., Xu, S. Y., Schroeder, M. A., Cresce, A. V., Wang, F., Yang, C. Y., Hu, Y. S., Xu, K., and Wang, C. S. (2017). "Water-in-Salt" Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting. Advanced Energy Materials 7(21): 1701189.

Taimat Energy. (n.d.). TAIMAT Powerful, Fast charging, Enduring cells Thanks Sodium-Ion. Retrieved November 25, 2020, from http://www.tiamat-energy.com/.

Wen, Z., Hu, Y., Wu, X., Han, J., and Gu, Z. (2013). Main Challenges for High Performance NAS Battery: Materials and Interfaces. Advanced Functional Materials 23: 1005–1018.

Xie, D., Zhang, M., Wu, Y., Xiang, L., and Tang, Y. (2020). A Flexible Dual-Ion Battery Based on Sodium-Ion Quasi-Solid-State Electrolyte with Long Cycling Life. Advanced Functional Materials 30(5): 1906770.

Xu, Y., Zhou, M., and Lei, Y. (2018). Organic materials for rechargeable sodium-ion batteries. Materials Today 21(1): 60-78.

Yin, J., Qi, L., and Wang, H. (2012). Sodium Titanate Nanotubes as Negative Electrode Materials for Sodium-Ion Capacitors. ACS Applied Materials and Interfaces 4: 2762−2768.

You, Y., and Manthiram, A. (2017). Progress in High-Voltage Cathode Materials for Rechargeable Sodium-Ion Batteries. Advanced Energy Materials 1701785.

Yu, F., Du, L., Zhang, G., Su, F., Wang, W., and Sun, S. (2019). Electrode Engineering by Atomic Layer Deposition for Sodium-Ion Batteries: From Traditional to Advanced Batteries. Advanced Functional Materials 1906890.

Zhang, Y., Liu, S. Q., Ji, Y. J., Ma, J. M., and Yu, H. J. (2018). Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives. Advanced Materials 30(38): 1706310.

Zhang, Z., Zhang, Q., Ren, C., Luo, F., Ma, Q., Hu, Y., Zhou, Z., Li, H., Huang, X., and Chen, L. (2016). A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A 4(41): 15823-15828.

Zhang, Z., Zhang, Q., Shi, J., Chu, Y. S., Yu, X., Xu, K., Ge, M., Yan, H., Li, W., Gu, L., Hu, Y., Li, H., Yang, X., Chen, L., and Huang, X. (2016). A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life. Advanced Energy Materials 7(4): 1601196.

Zhou, G. Y., Miao, Y. E., Wei, Z. X., Mo, L. L., Lai, F. L., Wu, Y., Ma, J. M., and Liu, T. X. (2018). Bioinspired Micro/Nanofluidic Ion Transport Channels for Organic Cathodes in High-Rate and Ultrastable Lithium /Sodium-Ion Batteries. Advanced Functional Materials 28(52): 1804629.