Fabrication of CH3NH3Pb1-xGexBr2xI3-2x Perovskite Films as Light Absorber in Carbon-Based Hole-Transporting-Layer-Free Perovskite Solar Cells

Main Article Content

Namfon Aunping
Madsakorn Towannang
Pantiwa Kamlangwan
Anusit Thongnum
Wirat Jarernboon
Samuk Pimanpang
Chesta Ruttanapun
Vittaya Amornkitbamrung

Abstract

In this research, CH3NH3Pb1-xGexBr2xI3-2x perovskite films were prepared by a hot-casting method with 4 different GeBr2 concentrations (x = 0, 1/128, 2/128 and 3/128). The absorbance spectra of CH3NH3Pb1-xGexBr2xI3-2x at x = 2/128 has the highest intensity, and the energy band gap of all CH3NH3Pb1-xGexBr2xI3-2x films is approximately 1.60 eV. SEM images of all perovskite films represent the continuous and smooth perovskite film covering entire titanium dioxide (TiO2) surface. The CH3NH3Pb1-xGexBr2xI3-2x perovskite films were used as the light absorption layer in carbon-based hole – transport – layer – free (HTL) perovskite solar cells (PSCs). The performance of carbon-based HTL – free CH3NH3Pb1-xGexBr2xI3-2x PSCs in the first day was 3.97%, 3.37%, 2.96% and 2.54% for x = 0, 1/128, 2/128 and 3/128, respectively. The efficiency of the solar cell devices increased significantly to 5.33%, 4.33%, 5.90% and 5.96% for x = 0, 1/128, 2/128 and 3/128, respectively, after 1,000 hr.

Article Details

How to Cite
Aunping, N. ., Towannang, M. ., Kamlangwan, P. ., Thongnum , A. ., Jarernboon, W., Pimanpang, S. ., Ruttanapun, C. ., & Amornkitbamrung, V. (2022). Fabrication of CH3NH3Pb1-xGexBr2xI3-2x Perovskite Films as Light Absorber in Carbon-Based Hole-Transporting-Layer-Free Perovskite Solar Cells. KKU Science Journal, 49(2), 174–183. Retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/250257
Section
Research Articles
Author Biographies

Madsakorn Towannang, Department of Physics, Faculty of Science, Khon Kaen University, Meuang, Khon Kaen, 40002, Thailand

Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC- KKU (RNN), Khon Kaen University, Khon Kaen, 40002, Thailand

Pantiwa Kamlangwan, Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand

Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC- KKU (RNN), Khon Kaen University, Khon Kaen, 40002, Thailand

Wirat Jarernboon, Department of Physics, Faculty of Science, Khon Kaen University, Meuang, Khon Kaen, 40002, Thailand

-Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC- KKU (RNN), Khon Kaen University, Khon Kaen, 40002, Thailand
-Thailand Center of Excellence in Physics (ThEP), Chiang Mai 50200, Thailand

Samuk Pimanpang, Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand

-Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC- KKU (RNN), Khon Kaen University, Khon Kaen, 40002, Thailand
-Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
-Thailand Center of Excellence in Physics (ThEP), Chiang Mai 50200, Thailand

Chesta Ruttanapun, Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand

Thailand Center of Excellence in Physics (ThEP), Chiang Mai 50200, Thailand

Vittaya Amornkitbamrung, Department of Physics, Faculty of Science, Khon Kaen University, Meuang, Khon Kaen, 40002, Thailand

-Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC- KKU (RNN), Khon Kaen University, Khon Kaen, 40002, Thailand
-Thailand Center of Excellence in Physics (ThEP), Chiang Mai 50200, Thailand

References

Chen, Z., Turedi, B., Alsalloum, A. Y., Yang, C., Zheng, X., Gereige, I., AlSaggaf, A., Mohammed, O. F. and Bakr, O. M. (2019). Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency. ACS Energy Letters 4(6): 1258-1259.

Chiao, G. H., Li, L. C., Shellaiah, M. and Sun, K. W. (2019). Improved morphological characteristics and electronic properties of MAPbI3 thin film with multiple methylamine spray treatments. Organic Electronics 78: 105556.

Gao, C., Liu, J., Liao, C., Ye, Q., Zhang, Y., He, X., Guo, X., Mei, J. and Lau., W. (2015). Formation of organic–inorganic mixed halide perovskite films by thermal evaporation of PbCl2 and CH3NH3I compounds. RSC Advances 5: 26175-26180.

Johanssona, M. B., Xieb, L., JoKima, B., Thyrc, J., Kandraad, T., Johanssona, E. M. J., Göthelide, M., Edvinssonc, T. and Boschloo G. (2020). Highly crystalline MAPbI3 perovskite grain formation by irreversible poor-solvent diffusion aggregation, for efficient solar cell fabrication. Nano Energy 78: 105346.

Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of American Chemistry Society 131(17): 6050-6051.

Kopacic, I., Friesenbichler, B., Hoefler, S. F., Kunert, B., Plank, H., Rath, T. and Trimmel, G. (2018). Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering. ACS Applied Energy Mater 1(2): 343–347.

Krishnamoorthy, T., Ding, H., Yan, C., Leong, W. L., Baikie, T., Zhang, Z., Sherburne, M., Li, S., Asta, M., Mathews, N. and Mhaisalkar, S. G. (2015). Lead-free Germanium Iodide Perovskite Materials for Photovoltaic Application. Journal of Materials Chemistry A 3: 23829-23832.

Lakhdar N. and Hima A. (2019). Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Optical Materials 99: 109517.

Liu, F., Ding, C., Zhang, Y., Kamisaka, T., Zhao, Q., Luther, J. M., Toyoda, T., Hayase, S., Minemoto, T., Yoshino, K., Zhang, B., Dai, B., Jiang, J., Tao, S. and Q. Shen, Q. (2019). GeI2 Additive for High Optoelectronic Quality CsPbI3 Quantum Dots and Their Application in Photovoltaic Devices. Chemistry of Materials 31(3): 798–807.

Mali, S. S., Patil, J. V., and Hong, C. K. (2020). Making air-stable allinorganic perovskite solar cells through dynamic hotair. Journal Nano Today 33: 100880.

Mateen, M., Arain, Z., Liu, X., Liu, C., Yang, Y., Ding, Y., Ma, S., Ren, Y.-K., Wu, Y., Tao, Y., Shi, P. and Dai, S. (2019). Highperformance mixed-cation mixed-halide perovskite solar cells enabled by a facile intermediate engineering technique. Journal of Power Sources 448: 227386.

Pitchaiya, S., Eswaramoorthy, N., Natarajan, M., Santhanam, A., Asokan, V., Ramakrishnan, V. M., Rangasamy, B., Sundaram, S., Ravirajan, P., and Velauthapillai, D. (2020). Perovskite Solar Cells: A Porous Graphitic Carbon-based Hole Transporter/Counter Electrode Material Extracted from an Invasive Plant Species Eichhornia Crassipes. Scientific Reports 10: 6835.

Sa, R., Zha, W., Yuan, R. and Chen, J. (2020). Exploring electronic and optical properties of Ge-based perovskites under strain: Insights from the first-principles calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 229: 118013.

Song, Z., Watthage, S. C., Phillips, A. B. and Heben, M. J. (2016). Pathways toward high-performance perovskite solar cells: review of recent advances in organometal halide perovskites for photovoltaic applications. Journal of Photonics for Energy 6(2): 022001-022023.

Sun, P. P., Li, Q. S., Feng, S. and Li, Z. S. (2016). Mixed Ge/Pb Perovskite Light Absorbers with an Ascendant Efficiency Explored from Theoretical View. Physical Chemistry Chemical Physics 18: 14408-14418.

Tai, E. G., Wang, R. T., Chen, J. Y. and Xu, G. (2019). A Water-Stable Organic-Inorganic Hybrid Perovskite for Solar Cells by Inorganic Passivation. Crystals 9(2): 83