Potassium-ion Batteries: An Alternative Energy Storage Technology from Domestic Mineral Resources

Main Article Content

Nattha Chaiyapo
Patharaporn Khamket
Supichaya Laoongoen
Kandanai Maneewong
Suratdawan Srichat
Nawatakorn Subsamran
Areeyaporn Nittayachit
Thiradet Kunkhemarangsi
Kulthida Bunthorn
Theeradon Poolperm
Pornjira Phuenhinlad
Nonglak Meethong

Abstract

Potassium-ion batteries (KIBs) have attracted considerable interest for use as alternative energy storage systems due to their fast ionic conductivity, high operating voltage, low flammability, low cost, and high energy density. However, the research on KIBs is still in its infancy compared with the commercialized Lithium-ion batteries (LIBs). Therefore, it is very essential for battery researchers to understand effects of each component and charge storage mechanisms in electrode materials for further developments of high performance KIBs. This will enable KIBs to become the alternative energy storage technology to compensate limitations of LIBs in the future. In this review, we summarize recent research on the important issues of electrode materials, electrolytes and challenges facing of KIBs technology for commercialization.

Article Details

How to Cite
Chaiyapo, N. ., Khamket, P. ., Laoongoen , S. ., Maneewong, K. ., Srichat, S., Subsamran, N. ., Nittayachit, A. ., Kunkhemarangsi, T. ., Bunthorn, K. ., Poolperm , T., Phuenhinlad, P. ., & Meethong, N. . (2021). Potassium-ion Batteries: An Alternative Energy Storage Technology from Domestic Mineral Resources. KKU Science Journal, 49(2), 134–145. retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/250253
Section
Review Articles
Author Biography

Nonglak Meethong, Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Meuang, Khon Kaen, 40002 Thailand

Institute of Nanomaterials Research and Innovation for Energy, Khon Kaen University, Meuang, Khon Kaen, 40002 Thailand

References

กระทรวงอุตสาหกรรม. (2559). “แร่โพแทช”. แหล่งข้อมูล: http://www.industry.go.th/industry/index.php/th/knowledge/item/10610-2016-05-23-05-43-19. ค้นเมื่อ วันที่5 มกราคม 2564.

ปุรุเมธ พิพิธวรกุล และนงลักษณ์ มีทอง. (2562). แบตเตอรี่ชนิดลิเทียมไอออนแบบของแข็งทั้งหมด. วารสารวิทยาศาสตร์ มข. 47(3): 380-391.

Beltrop, K., Beuker, S., Heckmann, A., Winter, M., Placke, T. (2017). Alternative Electrochemical Energy Storage: PotassiumBased Dual-Graphite Batteries. Energy and Environmental Science 10(10): 2090-1094.

Chen, H., Zhang, Z., Wei, Z., Chen, G., Yang, X., Wang, C., and Du, F. (2019). Water-in-Salt Electrolyte Avoiding Organic Material Dissolution and Enhanced Kinetics Property for Aqueous Potassium Ion Batteries. Sustainable Energy Fuels 4: 128-131.

Chu, J., Yu, Q., Yang, D., Xing, L., Lao, C.-Y., Wang, M., Han, K., Liu, Z., Zhang, L., Du, W., Xi, K., Bao, Y. and Wang, W. (2018). Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell “nano-crisps” for high-performance potassium-ion batteries. Applied Materials Today 13: 344.

Deng, Q., Pei, J., Fan, C., Ma, J., Cao, B., Li, C., Jin, Y., Wang, L. and Li, J. (2017). Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy. 33: 350-355.

Deng, L., Zhang, Y., Wang, R., Feng, M., Niu, X. G., Tan, L. and Yujie Zhu, Y. (2019). Influence of KPF6

and KFSI on the Performance of Anode Materials for Potassium-Ion Batteries: A Case Study of MoS2 . ACS Applied Materials and Interfaces 11(25): 22449–22456.

Eftekhari, A. (2004). Potassium secondary cell based on Prussian blue cathode. Journal of Power Sources 126(1-2): 221-228.

Fedotov, S. S., Khasanova, N. R., Samarin, A. S., Drozhzhin, O. A., Batuk, D., Karakulina, O. M., Hadermann, J., Abakumov, A. M. and Antipov, E. V. (2016). AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries. Chemistry of Materials 28: 411-415.

Fei, H., Liu, Y., An, Y., Xu, X., Zhang, J., Xi, B., Xiong, S. and Feng, J. Safe all-solid-state potassium batteries with three dimensional, flexible and binder-free metal sulfide array electrode. Journal of Power Sources 433: 226697.

Gao, H., Zhou, T., Zheng, Y., Zhang, Q., Liu, Y., Chen, J., Liu, H. and Guo, Z. (2017). CoS Quantum Dot Nanoclusters for High-Energy Potassium-Ion Batteries. Advanced Functional Materials 27(43): 1702634.

Han, J., Xu, M., Niu, Y., Li, G.-N., Wang, M., Zhang, Y., Jia, M. and Li, C. M. (2016). Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chemical Communications 52(75): 11274–11276.

Han, J., Niu, Y., Bao, S.-J., Yu, Y.-N., Lu, S.-Y. and Xu, M. (2016). Nanocubic KTi2 (PO4)3 electrodes for potassium-ion batteries. Chemical Communications 52(78): 11661-11664.

Han, J., Li, G.-N., Liu, F., Wang, M., Zhang, Y., Hu, L., Dai, C. and Xu, M. (2017). Investigation of K3V2

(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chemical Communications 53: 1805-1808.

He, G. and Nazar, L. F. (2017). Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries. ACS Energy Letters 2(5): 1122–1127.

He, X.-D., Liu, Z.-H., Liao, J.-Y., Ding, X., Hu, Q., Xiao, L.-N., Wang, S. and Chen, C.-H. (2019). A three-dimensional macroporous antimony@carbon composite as a highperformance anode material for potassium-ion batteries. Journal of Materials Chemistry A 7: 9629-9637.

Hironaka, Y., Kubota, K. and Komaba, S. (2017). P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. Chemical Communications 53: 3693-3696.

Jian, Z., Luo, W. and Ji, X. (2015). Carbon electrodes for K-ion batteries. Journal of the American Chemical Society 137(36): 11566-11569.

Jian, Z., Hwang, S., Li, Z., Hernandez, A. S., Wang, X., Xing, Z., Su, D. and Ji, X. (2017). Hard–Soft Composite Carbon as a Long-cycling and High- Rate Anode for Potassium- Ion Batteries. Advanced Functional Materials 27(26): 1700324.

Jian, Z., Xing, Z., Bommier, C., Li, Z. and Ji, X. (2016). Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Advanced Energy Materials 6(3): 1501874.

Ju, Z., Zhang, S., Xing, Z., Zhuang, Q., Qiang, Y. and Qian, Y. (2016). Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Applied Materials and Interfaces 8(32): 20682-20690.

Kim, H., Kim, J. C., Bo, S.-H., Shi, T., Kwon, D.-H. and Ceder, G. (2017). K-Ion Batteries Based on a P2-Type K0.6CoO2 Cathode. Advanced Energy Materials 7: 1700098.

Kim, H., Seo, D.-H., Urban, A., Lee, J., Kwon, D.-H., Bo, S.-H., Shi, T., Papp, J. K., McCloskey, B. D. and Ceder, G. (2018). Stoichiometric Layered Potassium Transition Metal Oxide for Rechargeable Potassium Batteries. Chemistry of Materials 30: 6532-6539.

Kishore, B., Venkatesh, G. and Munichandraiah, N. (2016). K2Ti4O9 : A Promising Anode Material for Potassium Ion Batteries. Journal of The Electrochemical Society 163(13): A2551-A2554.

Komaba, S., Hasegawa, T., Dahbi, M. and Kubota, K. (2015). Potassium intercalation into graphite to realize highvoltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochemistry Communications 60: 172-175.

Leonard, D. P., Wei, Z., Chen, G., Du, F. and Ji, X. (2018). Water-inSalt Electrolyte for Potassium-Ion Batteries. ACS Energy Letters 3(2): 373-374.

Liang, Y., Tao, Z. and Chen, J. (2012). Organic Electrodes: Organic Electrode Materials for Rechargeable Lithium Batteries. Advanced Energy Materials 2: 742-769.

Liang, Y., Zhang, P. and Chen, J. (2013). Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chemical Science 4: 1330-1337.

Li, W. and Oyama, Y. (2005). Additives for increasing ion conductivity of molten salt type electrolyte in battery. US20080286649A1.

Liu, Y., Fan, F., Wang, J., Liu, Y., Chen, H., Jungjohann, K. L., Xu, Y., Zhu, Y., Bigio, D., Zhu, T. and Wang, C. (2014). In situtransmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Letters 14(6): 3445-3452.

Liu, Y., Tai, Z., Zhang, J., Pang, W. K., Zhang, Q., Feng, H., Konstantinov, K., Guo, Z. and Liu, H. K. (2018). Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nature Communications 9: 3645.

Lu, K., Zhang, H., Gao, S., Cheng, Y. and Ma, H. (2018). High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes. Nanoscale 10(44): 20754-20760.

Luo, W., Wan, J., Ozdemir, B., Bao, W., Chen, Y., Dai, J., Lin, H., Xu, Y., Gu, F., Barone, V. and Hu, L. (2015). Potassium ion batteries with graphitic materials. Nano Letters 15(11): 7671-7677.

Masquelier, C. and Croguennec, L. (2013). Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chemical Reviews 113(8): 6552- 6591.

Rajagopalan, R., Tang, Y., Ji, X., Jia, C. and Wang, H., (2020). Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Advanced Functional Materials 30(12): 1909486.

Recham, N., Rousse, G., Sougrati, M. T., Chotard, J.-N., Frayret, C., Mariyappan, S., Melot, B. C., Jumas, J.-C. and Tarascon, J.-M. (2012). Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes. Chemistry of Materials 24(22): 4363-4370.

Ren, X., Zhao, Q., McCulloch, W.D. and Wu, Y. (2017). MoS2 as a long-life host material for potassium ion intercalation. Nano Research 10(4): 1313–1321.

Share, K., Cohn, A. P., Carter, R. E. and Pint, C. L. (2016). Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Nanoscale. 8(36): 16435-16439.

Share, K., Cohn, A. P., Carter, R., Rogers, B. and Pint, C. L. (2016). Role of nitrogen-doped graphene for improved highcapacity potassium ion battery anodes. ACS Nano 10(10): 9738-9744.

Sultana, I., Rahman, M. M., Mateti, S., Ahmadabadi, V. G., Glushenkov, A. M. and Chen, Y. (2 0 1 7 ). K-ion and Naion storage performances of Co3O4–Fe2O3 nanoparticledecorated super P carbon black prepared by a ball milling process. Nanascale 9(10): 3646-3654.

Widmann, A., Kahlert, H., Prelevic, I. P., Wulff, H., Yakhmi, Nitin Bagkar, J. V. and Scholz, F. (2002). Structure, Insertion Electrochemistry, and Magnetic Properties of a New Type of Substitutional Solid Solutions of Copper, Nickel, and Iron Hexacyanoferrates/Hexacyanocobaltates. Inorganic Chemistry 41(22): 5706-5715.

Xue, Q., Li, D., Huang, Y., Zhang, X., Ye, Y., Fan, E., Li, L., Wu, F. and Chen, R. (2018). Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A 6: 12559-12564.

Yoshii, K., Masese, T., Kato, M., Kubota, K., Senoh, H. and Shikano, M. (2019). Sulfonylamide-Based Ionic Liquids for HighVoltage Potassium-Ion Batteries with Honeycomb Layered Cathode Oxides. ChemElectroChem 6(15): 3901-3910.

Zhang, W., Mao, J., Li, S., Chen, Z. and Guo, Z. (2017). PhosphorusBased Alloy Materials for Advanced Potassium-Ion Battery Anode. Journal of the American Chemical Society 139(9): 3316–3319.

Zhang, W., Pang, W. K., Sencadas, V. and Guo, Z. (2018). Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2: 1534–1547.

Zhang, Z., Li, M., Gao, Y., Wei, Z., Zhang, M., Wang, C., Zeng, Y., Zou, B., Chen, G., Du, F., (2018). Fast potassium storage in hierarchical Ca0.5Ti2 (PO4)3@C microspheres enabling high-performance Potassium-Ion capacitors. Advanced Functional Materials 28(36): 1802684.