The Comparison of Parameters Efficiency of M-GRM Model between Posterior Predictive Model Method and Likelihood ratio Method with Monte Carlo Simulation Method

Main Article Content

เกียรติขร โสภณาภรณ์
ปิยะทิพย์ ประดุจพรม
กนก พานทอง

Abstract

This research aims to compare the performance of M-GRM models parameter with Monte Carlo simulation based on approximation method of Posterior predictive model (when b = -2.5,  -2, 0, 1, 2, 2.5: c = 0.1,0.2, 0.3: gif.latex?\alpha = 0.3, 1.0, 1.7, gif.latex?\theta = -3, -2, -1, 0, 1, 2, 3 and gif.latex?\eta = 50, 100, 200, 400 with 1,764 situations). For determination the unidimentional property of M-GRM using R Program to replicate 10,000 recursions with 1,764 situations, the sample size of 50, 100, 200, 400 was used. The result shows that the b parameter from posterior predictive model has more performance than likelihood method where as c parameter, form likelihood method has more performance in vice versus.

Article Details

How to Cite
โสภณาภรณ์ เ. ., ประดุจพรม ป. ., & พานทอง ก. . (2019). The Comparison of Parameters Efficiency of M-GRM Model between Posterior Predictive Model Method and Likelihood ratio Method with Monte Carlo Simulation Method. KKU Science Journal, 47(3), 538–550. retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/250036
Section
Research Articles