Numerical Study of Conjugate Heat Transfer in Heat Sink Fins for Thermoelectric Modules

Main Article Content

Chatchai Leelasiriwilai
Jongjit Hirunlabh
Chaiporn Suphahitanukool
Sumate Sathitbun-anan
Joseph Khedari

Abstract

This research presents a numerical study using computational fluid dynamics (CFD) and conjugate heat transfer techniques to evaluate the thermal performance of a heat sink designed for thermoelectric modules under steady-state conditions. The heat sink has dimensions of 140 x 300 x 37 mm, with 20 fins and a heat-receiving area of 40 x 300 mm. The model was subjected to constant temperature boundary conditions at three levels:  80°C, 90 °C, and 100 °C. Forced convection was applied with outlet air flow rates of 0.04 m³/s, 0.05 m³/s,           0.06 m³/s, 0.07 m³/s, and 0.08 m³/s. The study found that the air temperature difference and air velocity significantly influenced the heat transfer rate of the heat sink. The specified flow rates resulted in turbulent flow, with Reynolds numbers ranging from 5,300 to 10,600. The heat transfer coefficients were similar at identical Reynolds numbers, while at 100 °C, the Biot number reached its maximum across all flow rates.

Article Details

How to Cite
Leelasiriwilai, C., Hirunlabh, J., Suphahitanukool, C., Sathitbun-anan, S., & Khedari, J. . (2025). Numerical Study of Conjugate Heat Transfer in Heat Sink Fins for Thermoelectric Modules. Journal of Energy and Environment Technology of Graduate School Siam Technology College, 12(1), 15–27. retrieved from https://ph01.tci-thaijo.org/index.php/JEET/article/view/260429
Section
Research Article

References

L. Ding, W. Ruochen, Y. Wei, and Z. Weiqi, “A Numerical Study on the Performance of a Converging Thermoelectric Generator System Used for Waste Heat Recovery,” Applied Energy, 2020, 207.

P. Fernandez-Y, V. Romero, O. Armas, and G. Cerretti, “Thermal Management of Thermoelectric Generators for Waste Energy Recovery,” Applied Thermal Engineering, 2021, 196.

G. Ayush, K. Manoj, and K. Anil, “Enhanced Heat Transfer in Plate Fin Heat Sink with Dimples and Protrusions,” Heat and Mass Transfer, 2019, 55, pp. 2247–2260.

C. Lertsatitthanakorn, J. Hirunlabh, J. Khedari, and M. Daguenet, “Experimental Performance of a Ceiling-Type Free Convected Thermoelectric Air Conditioner,” International Journal of Ambient Energy, 2002, Volume 23, Issue 2, pp. 453-457.

C. Udomsakdigool, J. Hirunlabh, J. Khedari, and B. Zeghmati, “Design Optimization of a New Hot Heat Sink with a Rectangular Fin Array for Thermoelectric Dehumidifiers,” Heat Transfer Engineering, 2007, 28, pp. 645-655.

H. Joel, and K. B. Yogesh, “Finite Element Analysis (FEA) and Thermal Gradient of a Solid Rectangular Fin with Embossing’s for Aerospace Applications,” Advances in Aerospace Science and Technology, 2018, 3, pp. 49-60.

P. Keuntae, K. Beom-soo, and K. Sangwoo, “Influence of Design Parameters on Natural Convection Heat Transfer in Additively Manufactured Body Centered Cubic Lattice Structures,” International Journal of Thermal Sciences, 2024, 205.

H. Haya, F. Basim, and S. Qasim, “Investigation the Influence of the Number and Configuration of Fins on the Hydrothermal Behavior of a Double-Pipe Heat Exchanger,” Journal of Engineering Research, 2023.

R. Javad, A. Abbas, and S. A. Majid, “Optimization of conjugate heat transfer in wavy walls microchannels,” Applied Thermal Engineering, 2015, 82, pp. 318 – 328.

T. Xi-Wei, W. Wei, Z. Shu-Zhen, and Q. Si-Hao, “A Novel Design Method of Heat Sink with Conjugate Heat Transfer by Free-Shape Channel Modeling,” International Journal of Heat and Mass Transfer, 2021, 176.

ธันยบูรณ์ ถาวรวรรณ์ และเชาวฤทธิ์ วันเสาร์. “การศึกษาพฤติกรรมการไหลของอากาศผ่านแถวทรงกระบอกตันในอุโมงค์ลมความเร็วลมต่ำ ด้วยเทคนิคพลศาสตร์ของไหลเชิงคำนวณ,” วารสารวิชาการ มทร.สุวรรณภูมิ, Volume 4, Issue 1, January-June 2016, pp. 32-45.

R.C. Adhikari, D.H. Wood, and M. Pahlevani, “An Experimental and Numerical Study of Forced Convection Heat Transfer from Rectangular Fins at Low Reynolds numbers,” International Journal of Heat and Mass Transfer, 2020, 163.

กฤษฎางค์ ศุกระมูล, ภาคภูมิ สุภาชาติ และอุชา โพธิ์สุวรรณ. “การพัฒนาเครื่องต้นแบบตัวเก็บรังสีดวงอาทิตย์แบบรางพาราโบลิกสำหรับผลิตน้ำร้อนใช้ในพื้นที่ชนบทด้วยคอมพิวเตอร์ช่วยในการคำนวณทางวิศวกรรม,” Journal of Energy and Environment Technology of Graduate School Siam Technology College, Volume 10, Issue 1, January - June 2023, pp. 1-15.

Z. Changshuang, D. Shunkai, Z. Fufeng, L. Jinbo, and L. Yingwen, “Prediction and Analysis of Thermal-Hydraulic Performance with Slit Fins in Small Diameter (3 mm to 4 mm) Heat Exchangers,” International Journal of Heat and Mass Transfer, 2021, 129.

I. Mohammad, “Experimental and Numerical Analysis of Heat Sink Using Various Patterns of Cylindrical Pin-Fins,” International Journal of Thermofluids, 2024, 23.

Yunus A. Cengel, and Afshin J. Ghajar. Heat and Mass Transfer Fundamentals & Applications, 5th ed., New York: McGraw-Hill Education; 2015.

MatWeb. (10 พฤศจิกายน 2567). คุณสมบัติของอลูมิเนียม, [ระบบออนไลน์], แหล่งที่มา: https://www.matweb.com/search/datasheet.aspx?matguid=187e3cd51c934d3e9b118ddeb343066c&n=1&ckck=1

MatWeb. (10 พฤศจิกายน 2567). คุณสมบัติของอีพ็อกซี่ใยแก้ว, [ระบบออนไลน์], แหล่งที่มา: https://www.matweb.com/search/datasheet.aspxMatGUID=8337b2d050d44da1b8a9a5e61b0d5f85

J. Shen, Q. Zhang, and Z. Wang, "Conjugate study on heat transfer enhancement of a TPMS-based hybrid heat sink design," Applied Thermal Engineering, vol. 257, p. 124350, Sep. 2024. doi: 10.1016/j.applthermaleng.2024.124350.