การหาประสิทธิภาพของคอมเพรสเซอร์ในระบบปรับอากาศจากการวิเคราะห์ด้วยภาพถ่ายความร้อน เมื่อค่าตัวเก็บประจุเกิดการเสื่อมสภาพ
Main Article Content
บทคัดย่อ
คอมเพรสเซอร์มีบทบาทสำคัญในระบบปรับอากาศ ทำหน้าที่หลักในการอัดสารทำความเย็นให้มีความดันและอุณหภูมิสูงขึ้นซึ่งส่งผลโดยตรงต่อปริมาณการใช้พลังงานไฟฟ้าของเครื่องปรับอากาศ โดยปกติแล้ว ในเครื่องปรับอากาศแบบความเร็วรอบคงที่ชนิดแยกส่วนจะใช้มอเตอร์คอมเพรสเซอร์ชนิดมอเตอร์คาปาซิเตอร์รันมอเตอร์โดยการบำรุงรักษาทั่วไปจะไม่มีการตรวจวัดค่าการเสื่อมสภาพในการใช้งานของตัวเก็บประจุในมอเตอร์คอมเพรสเซอร์ของเครื่องปรับอากาศเนื่องจากต้องถอดคาปาซิเตอร์และต้องต่ออุปกรณ์กลับที่ตำแหน่งเดิมหลังการตรวจวัดค่าถ้าอุปกรณ์ยังคงมีค่าการใช้งานต่อได้แต่ถ้าคาปาซิเตอร์มีความเสื่อมค่าลงจากค่าเดิมจะทำให้มอเตอร์คอมเพรสเซอร์ในเครื่องปรับอากาศทำงานไม่เติมประสิทธิภาพและเป็นการสิ้นเปลืองพลังงาน ในงานวิจัยนี้ มีวัตถุประสงค์เพื่อการวิเคราะห์การทำงานของมอเตอร์คอมเพรสเซอร์โดยใช้ภาพถ่ายความร้อน ในขั้นตอนสุดท้าย เพื่อวิเคราะห์ประสิทธิภาพมอเตอร์คอมเพรสเซอร์ของระบบปรับอากาศ จากผลการทดลอง พบว่า 1) การวิเคราะห์การระบายความร้อนโดยใช้ภาพถ่ายความร้อนมีค่าสอดคล้องกับมาตรฐานการระบายความร้อน และ 2) ค่าความยอมรับได้ของประสิทธิภาพการระบายความร้อนต้องลดลงไม่เกิน 30 uf จากปกติการวิเคราะห์มอเตอร์คอมเพรสเซอร์ของเครื่องปรับอากาศโดยใช้ภาพถ่ายความร้อนนั้น สามารถนำไปประยุกต์สำหรับการตรวจบำรุงรักษาเครื่องปรับอากาศ ให้เหมาะกับประสิทธิภาพของเครื่องปรับอากาศและเป็นการป้องกันการเสื่อมสภาพของอุปกรณ์ในเครื่องปรับอากาศและเป็นการใช้ค่าพลังงานอย่างมีประสิทธิภาพ
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข่อมูลในบทความที่ลงตีพิมพ์ในวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วย หรือว่าร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม ถือเป็นลิขสิทธิ์ของวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม หากบุคคล หรือหน่วยงานใดต้องการนำทั้งหมด หรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อ หรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาต เป็นลายลักษณ์อักษรจากวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม เท่านั้น
เอกสารอ้างอิง
Fang, J., Li, X., and Wang, K. (2022) Optimization of Air Conditioning Energy Consumption Based on Indoor Comfort Degree, 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 3791-3796.
Kim, J. H., Kim, D. M., Jung, Y. H. and Lim, M. S. (2021) Design of Ultra-High-Speed Motor for FCEV Air Compressor Considering Mechanical Properties of Rotor Materials, in IEEE Transactions on Energy Conversion, vol. 36, no. 4, 2850-2860.
Xue, W., Wang, H. and Li, K. (2022) PMV inverse model-based indoor thermal environment control for thermal comfort and energy saving, 41st Chinese Control Conference (CCC), Hefei, China. 5294-5299.
Wu, D., Wei, W., Bai, J., and Mei, S., Energy and Exergy Efficiency Analysis of Advanced Adiabatic Compressed Air Energy Storage Based Trigeneration Energy Hub. CSEE Journal of Power and Energy Systems, vol. 9, no. 6, 2409-2422.
Yoo, H., S. Sul, K., Jang, H., and Hong, Y. (2007). Design of a Variable Speed Compressor Drive System for Air-Conditioner without Electrolytic Capacitor. IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 305-310.
Li, H. (2021). Thermal Fault Detection and Diagnosis of Electrical Equipment Based on the Infrared Image Segmentation Algorithm. Advances in Multimedia, vol. 2021, Article ID 9295771.
Trivedi, S., Bhola, S., Talegaonkar, A., Gaur, P. and Sharma, S. (2019) Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning. 20th International Conference on Intelligent System Application to Power Systems (ISAP), New Delhi, India, pp. 1-6.
Trongtirakul, T. and Agaian, S., New Retinex model-based infrared image enhancement, Proc. SPIE 12526, Multimodal Image Exploitation and Learning 2023, 1252606, 15 June 2023, doi: 10.1117/12.2661334.
T. Trongtirakul, S. Agaian, A, Oulefki, and K. Panetta, “Method for remote sensing oil spill applications over thermal and polarimetric imagery,” in IEEE Journal of Oceanic Engineering, vol. 48, no. 3, pp. 1-15, 8 May 2023.
Oulefki, A., Trongtirakul, T., S. Agaian, and Chiracharit, W. (2020). Detection and Visualization of Oil Spill Using Thermal Images," Proc. SPIE 11399, Mobile Multimedia/Image Processing, Security, and Applications 2020, 113990L.
Trongtirakul, T., Agaian, S. and Oulefki A. (2023). Accurate Tumor Segmentation in Thermograms Breast Images. Mathematical Biosciences and Engineering, vol. 20, no. 9, 16786-16806.
Oulefki, A., Agaian, S., Trongtirakul, T., Benbelkacem, S., Aouam, D., Henda, N. Z., and Abdelli M. L. Virtual Reality Visualization for Computerized COVID-19 Lesion Segmentation and Interpretation. Biomedical Signal Processing and Control, vol. 73, 103371, 2022.
Benbelkacem, S., Oulefki, A., Agaian, S., Zenati-Henda, N., Trongtirakul, T., Aouam, D., Masmoudi, M., and Zemmouri, M. (2022). COVID Automatic COVID-19 CT Image-Based Classification and Visualization Platform Utilizing Virtual and Augmented Reality Technologies. Diagnostics, vol. 12, no. 3, 649.
Oulefki, A., Agaian, S., Trongtirakul, T., and Laouar, A. K. (2021) Automatic COVID-19 Lung Infected Region Segmentation and Measurement Using CT-Scans Images, Pattern Recognition, vol. 114, 1-13.
Benbelkacem, S., Oulefki, A., Agaian, S., Trongtirakul, T., Aouam, D., Henda, N. Z., and Amara, K. (2021) Lung Infection Region Quantification, Recognition, and Virtual Reality Rendering of CT-Scan of COVID-19, Proc. SPIE 11734, Multimodal Image Exploitation and Learning 2021, 117340I.
T. Trongtirakul, A. Oulefki, S. Agaian, and W. Chiracharit, "Enhancement and Segmentation of Breast Thermograms," Proc. SPIE 11399, Mobile Multimedia/Image Processing, Security, and Applications 2020, 113990F, 21 April 2020.
Trongtirakul, T., Chiracharit, W., and Agaian, S. (2020). Color Restoration of Multispectral Images Near-Infrared (NIR) filter-to-Color (RGB) image. Proc. IS&T International Symposium on Electronic Imaging 2020, Image Processing: Algorithms and Systems XVIII, vol. 2020, 180-1-180-5.
Trongtirakul, T., and Agaian, S. (2022). Unsupervised and Optimized Thermal Image Quality Enhancement and Visual Surveillance Applications. Signal Processing: Image Communication. vol. 105, pp. 116714.
S. Parakul, K. Jaitong, P. Songsri, and T. Trongtirakul. Determination of Motor Efficiency in Air Condensing Unit Using Thermal Image Analytics in case the Degradation of Capacitance. Journal of Energy and Environment Technology of Graduate School Siam Technology College, vol. 9, no. 2, 50-61.
Ribas, F., Deschamps, C., Fagotti, F. Morriesen, A. and Dutra, T. (2008). Thermal Analysis of Reciprocating Compressors - A Critical Review. in Proceedings of the International Compressor Engineering Conference, West Lafayette, IN, USA, 17–20 July 2008.
Deng, Rongfeng; Lin, Yubin; Tang, Weijie et al., “Fault Diagnosis of Reciprocating Compressors Based on Thermal Imaging and Support Vector Machines.” Proceedings of IncoME-V & CEPE Net-2020: Condition Monitoring, Plant Maintenance and Reliability, Springer Nature Switzerland AG., vol.105, p. 206-216, 2021.
Katircioglu, F. and Cingiz. Z. (2024). Fault diagnosis for overcharge and undercharge conditions in refrigeration systems using infrared thermal images. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. vol.238, no.2, 837-850.