THE PROTOTYPE DEVELOPMENT OF PARABOLIC TROUGH SOLAR COLLECTOR FOR HOT WATER PRODUCTION USING IN RURAL AREAS WITH COMPUTER-AIDED ENGINEERING

Main Article Content

Pakpoom Supachart
Krissadang Sookramoon
Aucha Prosuwan

Abstract

Nowadays, parabolic trough solar collector technology is widely used in hot water production because this technology significantly increases the efficiency of hot water at a low cost, compared to the other technologies. But the design of parabolic trough solar collectors to achieve high thermal efficiency at an affordable price and can be used in rural areas has not been developed much. In addition, the technology of Computer-Aided Engineering (CAE) has been continuously developed; therefore, it was the beginning of this research that focused on the development of a parabolic trough solar collector for hot water production in rural areas with computer-aided engineering using SolidWorks software. This helps predict heat transfer behavior between the fluid flowing through the solar collector tube and the environment. The research aimed to compare the effect of thermal efficiency of parabolic trough solar collector prototype obtained from the numerical study with the experiment and to study an economic value of this prototype. In the experiment, the research team conducted the experiment from 8:00 AM to 5:00 PM during April 2022 and collected the results of various variables, including the temperature of water entering and discharging the solar collector tube, air temperature and solar irradiation. By comparing the simulation results with the experimental results, it is consistent: the parabolic trough solar collector could heat water temperature up to 64.3 C (simulation result) and 65 C (experimental result); moreover, its thermal efficiency was between 26.18 – 68.77% (simulation result) and 27.38 – 69.97% (experimental result) during a period from 12:00 AM to 3:00 PM.

Article Details

How to Cite
Supachart, P., Sookramoon, K., & Prosuwan, A. (2023). THE PROTOTYPE DEVELOPMENT OF PARABOLIC TROUGH SOLAR COLLECTOR FOR HOT WATER PRODUCTION USING IN RURAL AREAS WITH COMPUTER-AIDED ENGINEERING. Journal of Energy and Environment Technology of Graduate School Siam Technology College, 10(1), 1–15. Retrieved from https://ph01.tci-thaijo.org/index.php/JEET/article/view/250802
Section
Research Article

References

V. Pranesh, R. Velraj, S. Christopher, and V. Kumaresan, A 50 Year Review of Basic and Applied Research in Compound Parabolic Concentrating Solar Thermal Collector for Domestic and Industrial Applications, Solar Energy, 187, 2019, pp. 293-340.

A.E. Kouche, F.O. Gallego, Modeling and Numerical Simulation of a Parabolic Trough Collector using an HTF with Temperature Dependent Physical Properties, Mathematics and Computers in Simulation, 192, 2022, pp. 430-451.

สมชาย เจียจิตต์สวัสดิ์ ประพันธ์ พิกุลทอง และธเนศ วิลาศมงคลชัย. การตอบสนองของระบบสะสมพลังงานสำหรับอาคารที่มีการติดตั้งแผงพลังงานแสงอาทิตย์บนหลังคา: กรณีศึกษาพลังงานแสงอาทิตย์ที่มีความไม่สม่ำเสมอ. Journal of Energy and Environment Technology. Volume 7, Issue 1, January-June 2020, pp. 1-12.

ศรายุทธ์ จิตรพัฒนากุล กฤษณะ จันทสิทธิ์ และธีรวัฒน์ ชื่นอัศดงคต. ระบบสูบน้ำเคลื่อนที่พลังงานแสงอาทิตย์สำหรับชุมชนฐานรากในระดับครัวเรือน. Journal of Energy and Environment Technology. Volume 9, Issue 1, January-June 2022, pp. 11-22.

S.E. Ghasemi, A.A. Ranjbar, and A. Ramiar, Three-Dimensional Numerical Analysis of Heat Transfer Characteristics of Solar Parabolic Collector with Two Segmental Rings, Journal of Mathematics and Computer Science, 7, 2013, pp. 89-100.

C. Tzivanidis, E. Bellos, D. Korres, K.A. Antonopoulos, and G. Mitsopoulos, Thermal and Optical Efficiency Investigation of a Parabolic Trough Collector, Case Studies in Thermal Engineering, 6, 2015, pp. 226-237.

M. Ghodbane, B. Boumeddane, and N. Said, A Linear Fresnel Reflector as a Solar System for Heating Water: Theoretical and Experimental Study, Case Studies in Thermal Engineering, 8, 2016, pp. 176-186.

M. Ghodbane, B. Boumeddane, A Numerical Analysis of the Energy Behavior of a Parabolic Trough Concentrator, Journal of Fundamental and Applied Sciences, 8(3), 2016, pp. 671-691.

J.A. Duffie and W.A. Beckman, Solar Engineering of Thermal Processes, 4th edition, 2013, published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Y. Jaluria, Design and Optimization of Thermal Systems, 3rd edition, 2020, published by CRC press, Taylor & Francis Group, Boca Raton, United States.

สมบูรณ์ โอตรวรรณะ เกียรติศักดิ์ เหงี่ยมสูงเนิน และอธิพงษ์ มาลาทิพย์. “คอมพิวเตอร์ช่วยในการคำนวณทางวิศวกรรม”. พิมพ์ครั้งที่ 1. ศูนย์หนังสือสำนักพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ, ปทุมธานี, 2562.

E. Aydina, P. Eichholtzb, and E. Yönderc, The Economics of Residential Solar Water Heaters in Emerging Economies: The Case of Turkey, Energy Economics, 75, 2018, pp. 285-299.

การไฟฟ้าส่วนภูมิภาค. (1 ตุลาคม 2565). อัตราค่าไฟฟ้า-การไฟฟ้าส่วนภูมิภาค, [ระบบออนไลน์], แหล่งที่มา: https://www.pea.co.th/ Portals/0/demand_response/Electricity%20Reconsider.pdf?ver=2018-10-01-155123-370.

S. Gharehdaghi, S.F. Moujaes, and A.M. Nejad, Thermal-Fluid Analysis of A Parabolic Trough Solar Collector of A Direct Supercritical Carbon Dioxide Brayton Cycle: A Numerical Study, Solar Energy, 220, 2021, pp. 766-787.

A.E. Kouche, F.O. Gallego, Modeling and Numerical Simulation of A Parabolic Trough Collector using An HTF with Temperature Dependent Physical Properties, Mathematics and Computers in Simulation, 192, 2022, pp. 430-451.

J. Immonen, K. Mohammadi, and K.M. Powell, Simulating A Solar Parabolic Trough Collector Plant Used for Industrial Process Heat using An Optimized Operating Scheme that Utilizes Flexible Heat Integration, Solar Energy, 236, 2022, pp. 756-771.

Officemate. (9 ตุลาคม 2565). เครื่องทำน้ำอุ่น Stiebel Eltron WL 45 EC, [ระบบออนไลน์], แหล่งที่มา: https://www.officemate.co.th /en /stiebel-eltron-เครื่องทำน้ำอุ่น-stiebel-eltron-wl-45-ec-stiebel-eltron-ofmy004983.