A Framework of Attribute Data Measurement System Analysis of Machine Vision Techniques for Contamination Detection on Air Bearing Surface
Main Article Content
Abstract
The electronics industry of Thailand is an industry with high potential and very important to the Thai economy. the exported value from 2016 to 2019 years, an average of over US $ 30 billion per year. In the electronics industry, trying to develop new technologies to control quality, especially the small electronic components quality inspection. Attempts have been made to change the inspection method by the employee to image processing systems or machine vision. It improves the accuracy and continuity of work. However, the machine vision inspection has limitations in the confidence in the valuation of error from inspection results for a decision to implement the system. Therefore, this paper aims to provide a framework for analyzing the efficiency of machine vision systems by attribute data measurement system analysis for electronic components. The measurement system analysis framework of this document from the relevant literature review and presented in 3 parts, the first is a quality inspection by machine vision. The second part is the development of machine vision systems and the evaluation of the error from the inspection, and then finally is the measurement system analysis of the attribute data for machine vision analysis.
Results of this document scholars and managers can apply a framework for analyzing the attribute data measurement system as a guideline for verifying the confidence of measurement error and evaluate the performance of the machine vision systems
Article Details
เนื้อหาและข่อมูลในบทความที่ลงตีพิมพ์ในวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วย หรือว่าร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม ถือเป็นลิขสิทธิ์ของวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม หากบุคคล หรือหน่วยงานใดต้องการนำทั้งหมด หรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อ หรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาต เป็นลายลักษณ์อักษรจากวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม เท่านั้น
References
[2] Malamas EN, Petrakis EGM, Zervakis M, Petit L, Legat JD. A survey on industrial vision systems, applications and tools. Image Vis Comput. 2003;12(2):171–88.
[3] Wu F, Zhang X. An inspection and classification method for chip solder joints using color grads and Boolean rules. Robot Comput Integr Manuf. 2014;30(5):517–26.
[4] Jeffrey Kuo CF, Peng KC, Wu HC, Wang CC. Automated inspection of micro-defect recognition system for color filter. Opt Lasers Eng. 2015;70:6–17.
[5] Cen YG, Zhao RZ, Cen LH, Cui LH, Miao ZJ, Wei Z. Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction. Neurocomputing. 2015;149(C):1206–15.
[6] Down M, Czubak F, Gregory G, Stahley S, Benham D. Measurement System Analysis - MSA Fourth Edition [Internet]. Automotive Industry Action group: AIAG; 2010. 1–241 p. Available from: https://www.aiag.org/quality/automotive-core-tools/msa
[7] Tsai DM, Chen MC, Li WC, Chiu WY. A fast regularity measure for surface defect detection. Mach Vis Appl. 2012;23(5):869–86.
[8] Lin HD. Automated visual inspection of ripple defects using wavelet characteristic based multivariate statistical approach. Image Vis Comput. 2007;25(11):1785–801.
[9] Golnabi H, Asadpour A. Design and application of industrial machine vision systems. Robot Comput Integr Manuf. 2007;23(6):630–7.
[10] Demant C, Streicher-Abel B, Garnica C. Industrial Image Processing. 2nd ed. Industrial Image Processing. Springer-Verlag Berlin Heidelberg; 2013.
[11] Ravikumar S, Ramachandran KI, Sugumaran V. Machine learning approach for automated visual inspection of machine components. Expert Syst Appl. 2011;38(4):3260–6.
[12] Snyder WE, Qi H. Machine vision. Machine Vision. Cambridge University Press; 2010.
[13] Satorres S, Gomez J, Gamez J, Sanchez A. A Machine Vision for Automated Headlamp Lens Inspection. Vis Sensors Edge Detect. 2010;(August).
[14] Kunakornvong P, Sooraksa P. Machine vision for defect detection on the air bearing surface. In: Proceedings - 2016 IEEE International Symposium on Computer, Consumer and Control, IS3C 2016. IEEE; 2016. p. 37–40.
[15] กิติศักดิ์ พลอยพานิชเจริญ. การวิเคราะห์ระบบการวัด (MSA) : ประมวลผลด้วย MINITAB. กรุงเทพฯ: สมาคมส่งเสริมเทคโนโลยี (ไทย-ญี่ปุ่น); 2546.
[16] Wen S, Chen Z, Li C. Vision-based surface inspection system for bearing rollers using convolutional neural networks. Appl Sci. 2018;8(12):1–19.
[17] Y. Fasser and D. Brettner. Process Improvement in the Electronics Industry, Y. Fasser and D. Brettner, Wiley. Quality and Reliability Engineering. New York: John Wiley & Sons Inc.; 1992.
[18] Chryler Group LLC, Ford Motor Company, General Motors Corporation. Measurement system analysis 4th ed. Automotive Industrial Action Group(AIAG); 2010.