Exact solutions of the fractional Landau-Ginzburg-Higgs equation and the (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation using the simple equation method
คำสำคัญ:
simple equation method, fractional partial differential equation, (3+1)-dimensionalspace-timefractional modified KdV-Zakharov Kuznetsovequation, fractional Landau-Ginzburg-Higgs equationบทคัดย่อ
In this article, we analyze the fractional Landau-Ginzburg-Higgs equation and the (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, two ion wave equations, using the simple equation approach and the Bernoulli equation. The traveling wave solutions are demonstrated by the exponential and hyperbolic functions, which can be interpreted as kink waves. Their graphical representations are three-dimensional graphs, and contour graphs are shown using appropriate parameter values. Additionally, the results demonstrated that the technique employed in this study is a powerful analytical tool for obtaining exact traveling wave solutions to nonlinear models encountered in a variety of scientific and engineering fields.
References
Alabedalhadi, M. (2022). Exact travelling wave solutions for nonlinear system of spatiotemporal fractional quantum mechanics equations.Alexandria Engineering Journal,61(2), 1033-1044.
Baishya, C., & Rangarajan, R. (2018). A new application of G′/G-expansion method for travelling wave solutions of fractional PDEs.International Journal of Applied Engineering Research,13(11), 9936-9942.
Çenesiz, Y., Tasbozan, O., & Kurt, A. (2017). Functional Variable Method for conformable fractional modified KdV-ZK equation and Maccari system.Euro-Tbilisi Mathematical Journal,10(1),117-125.
Eslami, M., Fathi,V., B., Mirzazadeh, M., & Biswas, A. (2014). Application of first integral method to fractional partial differential equations.Indian Journal of Physics,88, 177-184.
Guner, O., Bekir, A., & Korkmaz, A. (2017). Tanh-type and sech-type solitons for some space-time fractional PDE models.The European Physical Journal Plus,132, 1-12.
Islam, M. T., Akbar, M. A., & Azad, M. A. K. (2019). Closed-form travelling wave solutions to the nonlinear space-time fractional coupled Burgers’ equation.Arab.Journal of Basic and Applied Sciences,26(1), 1-11.
Islam, S. R., Arafat, S. Y., & Wang, H. (2023). Abundant closed-form wave solutions to the simplified modified Camassa-Holm equation.Journal of Ocean Engineering and Science,8(3), 238-245.
Jhangeer, A., Faridi, W. A., Asjad, M. I., & Akgül, A. (2021). Analytical study of soliton solutions for an improved perturbed Schrödinger equation with Kerr law non-linearity in non-linear optics by an expansion algorithm.Partial Differential Equations in Applied Mathematics,4, 100102.
Kumar, D., Seadawy, A. R., & Joardar, A. K. (2018). Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology.Chinese journal of physics,56(1), 75-85.
Khodadad, F. S., Nazari, F., Eslami, M., & Rezazadeh, H. (2017). Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity.Optical and QuantumElectronics,49, 1-12.
Li, Y., Meyer, J., Lokki, T., Cuenca, J., Atak, O., & Desmet, W. (2022). Benchmarking of finite-difference time-domain method and fast multipole boundary element method for room acoustics.Applied Acoustics,191, 108662.
Osman, M. S., Rezazadeh, H., & Eslami, M. (2019). Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity.Nonlinear Engineering,8(1), 559-567.
Phoosree, S., & Thadee, W. (2022). Wave effects of the fractional shallow water equation and the fractional optical fiber equation.Frontiers in Applied Mathematics and Statistics,8, 900369.
Rezazadeh, H., Sabi’u, J., Jena, R. M., & Chakraverty, S. (2020). New optical soliton solutions for Triki–Biswas model by new extended direct algebraic method.Modern Physics Letters B,34(supp01), 2150023.
Rezazadeh, H., Tariq, K. U., Sabi’u, J., & Bekir, A. (2020). Abundant traveling wave solutions to the resonant nonlinear Schrödinger’s equation with variable coefficients.Modern Physics Letters B,34(12), 2050118.
Sabi’u, J., Jibril, A., & Gadu, A. M. (2019). New exact solution for the (3+1) conformable space–time fractional modified Korteweg–de-Vries equations via Sine-Cosine Method.Journal of Taibah University for Science,13(1), 91-95.
Sabi’u, J., Shaayesteh, M. T., Taheri, A., Rezazadeh, H., Inc, M., & Akgül, A. (2023). New exact solitary wave solutions of the generalized (3+ 1)-dimensional nonlinear wave equation in liquid with gas bubbles via extended auxiliary equation method.Optical and Quantum Electronics,55(7), 586.
Sahoo, S., & Ray, S. S. (2015). Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV–Zakharov–Kuznetsov equations.Computers & Mathematics with Applications,70(2), 158-166.
Sanjun, J., & Chankaew, A. (2022). Wave solutions of the DMBBM equation and the cKG equation using the simple equation method.Frontiers in Applied Mathematics and Statistics,8, 952668.
Salas, A. H., El-Tantawy, S. A., & Youssef, A. A. A. R. (2020). New solutions for chirped optical solitons related to Kaup-Newell equation: Application to plasma physics.Optik,218, 165203.
Shah, Z., Dawar, A., Nasir, S., Islam, S., Deebani, W., & Shutaywi, M. (2022). Application of Arrhenius chemical process on unsteady mixed bio-convective flows of third-grade fluids having temperature-dependent in thermo-rheological properties.Waves in Random and Complex Media,1-20.
Simpson, G. G. (1963). Biology and the Nature of Science: Unification of the sciences can be most meaningfully sought through study of the phenomena of life.Science,139(3550), 81-88.
Thadee, W., Chankaew, A., & Phoosree, S. (2022). Effects of wave solutions on shallow-water equation, optical-fibre equation and electric-circuit equation.Maejo International Journal of Science & Technology,16(3), 262-274.
Torvattanabun, M., Simtrakankul, C., & Duangpithak, S.(2019).The (3+1)-dimensional Fractional Modified Kdv-Zakharov-Kuznetsov Equation By Using The Improved Generalized Tanh-Coth Method.Journal of Mathematical Sciences: Advances and Applications,56, 53-65.
Zeng, J., & Liu, H. (2022). An approximate explicit analytical solution for the frictionless swash hydrodynamics with an improved seaward boundary condition.Coastal Engineering,174, 104127.

Downloads
เผยแพร่แล้ว
ฉบับ
บท
หมวดหมู่
License
Copyright (c) 2023 Journal of Applied Science and Emerging Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.