Mangosteen Detection Using Deep Learning

Main Article Content

Ratree Kummong


Robot technology has developed more and more rapidly. Robot were developed to harvest fruit instead of humans. Robot uses a camera and  computer to  process images,  detect fruit and location on branches  to control a mechanical arm to pick fruit. Image detection technique is therefore an important technology use to development of vision robot technology. Thailand's mangosteen export is one of the top in the world. A Mangosteen is a tall trunk which makes it difficult to harvest, to detect mangosteen on plants, must be classify is young or ripe, lies on  the branches and may be covered by the leaves. This research presents the detection of mangosteen on plants by image using Convolutional Neural Network (CNN) compare with Faster R-CNN deep learning framework. The research methods are as follows 1) image preparation 2) training deep learning to mature or ripe mangosteen detection 3) testing to   mature or ripe mangosteen detection. The performance of detection model employs the confusion matrix. The results show that can mature or ripe mangosteen detection, the model of CNN is an accuracy of 50.62%, precision of 26.42%, recall of 93.33% and F1-Score of  41.18%, the Faster R-CNN is an accuracy of 90.22%, precision of 63.16%, recall of 48.98% and F1-Score of 55.17%.

Article Details



มติชน, “หุ่นยนต์” เกษตรกรในอนาคต. สืบค้นจาก : lifestyle/news_387076. สืบค้นเมื่อ 1 มิถุนายน 2562.

วิชาการดอทคอม, การพัฒนาเทคโนโลยีหุ่นยนต์เก็บสตรอว์เบอร์รี. สืบค้นจาก: vnews/153453. สืบค้นเมื่อ 2 มิถุนายน 2562.

สำนักงานเศรษฐกิจการเกษตร, ข้อมูลเศรษฐกิจการเกษตร. สืบค้นจาก : สืบค้นเมื่อ 20 มกราคม 2563.

แนวหน้า, โลกธุรกิจ. สืบค้นจาก : สืบค้นเมื่อ 1 กันยายน 2563.

L. M. Azizah, S. F. Umayah, S. Riyadi, C. Damarjati, and N. A. Utama, “Deep Learning Implementation using Convolutional Neural Network in Mangosteen Surface Defect Detection.” IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, pp. 242-246, 2017.

S. Bargoti, and J. Underwood. “Deep Fruit Detection in Orchards.” IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 5164-5172, 2017.

H. Mureşan, and M. Oltean. “Fruit recognition from images using deep learning.” An International Scientific Journal of Sapientia Hungarian University of Transylvania, Vol. 10, No. 1, pp. 26-42, June, 2018.

S. A. Sanchez, H. J. Romero, and A. D. Morales. “A review: Comparison of performance metrics of pretrained models for object detection using the Tensor Flow framework.” IOP Conference Series: Materials Science and Engineering, Cartagena, Colombia, pp. 1-15, 2019.

W. S. McCulloch, and W. Pitts, “A logical calculus of the ideas immanent in nervous activity.” Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–137, 1943.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. “Backpropagation Applied to Handwritten Zip Code Recognition.” Neural Computation, Vol. 1, No. 4, pp. 541-551, December, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient- Based Learning Applied to Document Recognition.” in Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278–2324, November, 1998.

M. Subhi, and S. H. Ali, “A Deep Convolutional Neural Network for Food Detection and Recognition.” IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, pp. 284-287, 2018.

M. M. Rahman, S. M. Islam, R. Sassi, and M. Aktaruzzaman. “Convolutional neural networks performance comparison for handwritten Bengali numerals recognition.” SN Applied Sciences, November, 2019.

R. S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks. Available Online at, accessed on 1 December, 2019.

Y. Zhou, T. Xu, W. Zheng, and H. Deng. “Classification and recognition approaches of tomato main organs based on DCNN.” Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, Vol. 33, No. 15, pp. 219-226, August, 2017.

L. Fu, Y. Feng, Y. Majeed, and X. Zhang. “Kiwifruit detection in field images using Faster R-CNN with ZFNet” IFAC-PapersOnLine, Vol. 51, Issue 17, pp. 45-50. 2018.

X. Mai, H. Zhang, M. and Q. -. Meng, "Faster R-CNN with Classifier Fusion for Small Fruit Detection." IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, pp. 7166-7172, 2018.

S. Bargoti, and J. Underwood, “Deep Fruit Detection in Orchards.” IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 3626-3633, 2017.