PM2.5 modeling based on CALIPSO in Bangkok
DOI:
https://doi.org/10.55674/cs.v16i3.257117Keywords:
PM2.5, AOD, CALIPSO, Satellite data, Linear mixed effectAbstract
Air quality has become a severe issue in Bangkok, mainly due to PM2.5 (fine particulate matter with particle size less than 2.5 μm). Aerosol optical depth (AOD) obtained for active satellite data has been widely used to estimate PM2.5 near the ground. Nevertheless, passive satellite data are rarely used to estimate PM2.5 near the ground. In this study, a total AOD in troposphere data achieved from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) was used to determine PM2.5 with climate parameters (Temperature (TEM), relative humidity (RH), wind speed (WS), boundary layer height (BLH), and the normalized difference vegetation index (NDVI) using Linear Mixed Effect Method (LMEM). It was found that the coefficient (R2) increases from model 1 (0.87) to model 6 (0.99), and the root mean square error (RMSE) reduces from 2.65 to 0.00 μg/m3. The best model gives an R2=0.99 (models 5 and 6). PM2.5 patterns between observed and predicted show similar representative patterns. Therefore, our study provides CALIPSO AOD data with a potentially helpful estimation of PM2.5.
GRAPHICAL ABSTRACT
HIGHLIGHTS
-
PM2.5 concentrations were obtained using CALOPSO satellite data
- PM2.5 model based on AOD, climate and other parameters
- R2 of PM2.5 model obtained from the best model more than 0.99
References
W. Kumharn, S. Sudhibrabha, K. Hanprasert, S. Janjai, I. Masiri, S. Buntoung, S. Pattarapanitchai, R. Wattan, O. Pilahome, W. Nissawan, Y. Jankondee, Improved Hourly and long-term PM2.5 Prediction Modeling Based on MODIS in Bangkok, Remote Sens. Appl.: Soc. Environ. 28 (2022) 100864 . 10.1016/j.rsase.2022.100864.
W. Kumharn, S. Sudhibrabha, K. Hanprasert, S. Janjai, I. Masiri, S. Buntoung, S. Pattarapanitchai, R. Wattan, C. Homchampa, T. Srimaha, O. Pilahome, W. Nissawan, Y. Jankondee, Estimating hourly full-coverage PM2.5 concentrations model based on MODIS data over the northeast of Thailand, MODEL EARTH SYST ENV. 10 (2024) 1273 – 1280. 10.1007/s40808-023-01839-7.
O. Pilahome, W. Ninssawan, Y. Jankondee, S. Janjai, W. Kumharn, Long-term variations and comparison of aerosol optical properties based on MODIS and ground-based data in Thailand, Atmos.Environ. 286 (2022) 119218. 0.1016/j.atmosenv.2022.119218.
Q. Yang, Q. Yuan, L. Yue, T. Li, H. Shen, L. Zhang, The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations, Environ. Pollut. 248 (2019) 526 – 535. 10.1016/j.envpol.2019.02.071.
L. Yang, H. Xu, Z. Jin, Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model, J.Clean. Prod. 227 (2019) 472 – 482. 10.1016/j.jclepro.2019.04.231.
X. Ma, J. Wang, F. Yu, H. Jia, Y. Hu, Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China?, Atmos.Res. 181 (2016) 250 – 256. 10.1016/j.atmosres.2016.06.018.
H. Zhao, K. Gui, Y. Ma, Y. Wang, Y. Wang, H. Wang, Y. Zheng, L. Li, L. Zhang, H. Che, X. Zhang, Climatological variations in aerosol optical depth and aerosol type identification in Liaoning of Northeast China based on MODIS data from 2002 to 2019, Sci. Total Environ. 781 (2021), 146810. 10.1016/j.scitotenv.2021.146810.
G. Geng, X. Meng, K. He, Y. Liu, Random forest models for PM2.5 speciation concentrations using MISR fractional AODs, Environ. Res. Lett. 15(3) (2020) 034056. 10.1088/1748-9326/ab76df
Z. Ma, S. Dey, S. Christopher, R. Liu, J. Bi, P. Balyan, Y. Liu, A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data, Remote Sens. Environ. 269 (2022) 112827. 10.1016/j.rse.2021.112827.
Z. Fang, H. Yang, M. Zhao, Y. Cao, C. Li, K. Xing, X. Deng, C. Xie, and D. Liu, Assessing PM2.5, Aerosol, Aerosol Optical Depth Concentrations in Hefei Using Modis, Calipso, and Ground-Based Lidar, J. Appl. Spectrosc. 88(4) (2021) 794 – 801 10.1007/s10812-021-01242-z.
C. Lin, L. D. Labzovskii, H. W. Leung Mak, J. C. H. Fung, A. K. H. Lau, S. T. Kenea, M. Bilal, J. D. Vande Hey, X. Lu, J. Ma, Observation of PM2.5 using a combination of satellite remote sensing and low-cost sensor network in Siberian urban areas with limited reference monitoring, Atmos. Environ. 227 (2020) 117410. 10.1016/j.atmosenv.2020.117410.
D. Fu, Z. Song, X. Zhang, X. Xia, J. Wang, H. Che, H. Wu, X. Tang, J. Zhang, M. Duan, Mitigating MODIS AOD non-random sampling error on surface PM2.5 estimates by a combined use of Bayesian Maximum Entropy method and linear mixed-effects model, Atmos. Pollut. Res. 11(3) (2020) 482 – 490. 10.1016/j.apr.2019.11.020.
S.L.K. Unnithan, L. Gnanappazham, Spatiotemporal mixed effects modeling for the estimation of PM2.5 from MODIS AOD over the Indian subcontinent, GIScience Remote Sens. 57(2) (2020) 159 – 173 10.1080/15481603.2020.1712101.
F.-Y. Cheng, C.-Y. Feng, Z.-M. Yang, C.-H. Hsu, K.-W. Chan, C.-Y. Lee, S.-C. Chang, Evaluation of real-time PM2.5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2.5 forecasts in Taiwan, Atmos. Environ.244 (2021) 117909. 10.1016/j.atmosenv.2020.117909.
Z. Luo, F. Huang, H. Liu, PM2.5 concentration estimation using convolutional neural network and gradient boosting machine, J. Environ. Sci. 98 (2020) 85 – 93. 10.1016/j.jes.2020.04.042.
F. L. Luo, J. L. Jing, A. N. Wang, L. S. Liang, research on PM2.5 mass concentration retrieval method based on himawari-8 in beijing, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-3/W10 (2020) 903 – 910. 10.5194/isprs-archives-XLII-3-W10-903-2020.
X. Wang, R. Zhang, W. Yu, The Effects of PM2.5 Concentrations and Relative Humidity on Atmospheric Visibility in Beijing, J. Geophys. Res. 124(4) (2019) 2235 – 2259. 10.1029/2018JD029269.
F. Liu, Q. Tan, X. Jiang, F. Yang, W. Jiang, Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China, J. Environ. Sci. 86 (2019) 15 – 23. 10.1016/j.jes.2019.05.004.
X. Liu, X. Yu, Z. Zhang, PM2.5 Concentration Differences between Various Forest Types and Its Correlation with Forest Structure, J. Atmos. 6(11) (2015) 1801 – 1815. 10.3390/atmos6111801.
J. Kayee, P. Sompongchaiyakul, N. Sanwlani, S. Bureekul, X. Wang, R. Das, Metal Concentrations and Source Apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a Biomass Burning Season, ACS Earth Space Chem. 4(7) (2020) 1213 – 1226. 10.1021/acsearthspacechem.0c00140.
S. Pongpiachan, M. Hattayanone, J. Cao, Effect of agricultural waste burning season on PM2.5-bound polycyclic aromatic hydrocarbon (PAH) levels in Northern Thailand, Atmos. Pollut. Res. 8(6) (2017) 1069 – 1080. 10.1016/j.apr.2017.04.009.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Creative Science
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.