Transparent Thin Film of Zinc Zirconate Deposited by DC Magnetron Sputtering Technique

Main Article Content

Nattee Khottummee
Theerawut Sumphao
Somporn Thaowankaew


ZnZrO3 thin film was deposited by the non-reactive DC magnetron sputtering technique on glass substrates using ZnO and ZrO2 composite target of with a mass ratio of 90:10. The composited target was pressed at a pressure of 25 MPa. The deposition process was operated with the non-reactive method and heat treatment film in the air at a temperature of about 400 ̊C for 1 h. The X-ray diffraction patterns revealed cubic perovskite phases of ZnZrO3. The surface morphology was observed distribution of nano-granular and thickness of about 231 nm. The ZnZrO3 thin film was exhibited high transparency of about 95.46% in the visible region and optical gap energy of about 3.27 eV. The results of this research promise can develop transparent film for solar cell applications in the future.


Download data is not yet available.

Article Details

How to Cite
Khottummee, N., Sumphao, T., & Thaowankaew, S. (2020). Transparent Thin Film of Zinc Zirconate Deposited by DC Magnetron Sputtering Technique. SNRU Journal of Science and Technology, 13(1), 37-45. Retrieved from
Research Article


[1] Best Research-Cell Efficiency Chart,, 2 February 2020.
[2] J. Diekmann, P. Caprioglio, D. Rothhardt, M. Arvind, T. Unold, T. Kirchartz, D. Neher, M. Stolterfoht, Pathways towards 30% efficient perovskite solar cells, arXiv.1910.07422 (2019).
[3] A. Chilvery, S. Palwai, P. Guggilla, K. Wren, Perovskite Materials: Recent Advancements and Challenges. In Perovskite Materials, Devices and Integration, IntechOpen, 2019.
[4] R.E. Terry, Ronald E. Encyclopedia of Physical Science and Technology, (18) 3rd ed. Academic Press: San Diego, CA, USA, 2001.
[5] S. Moshawih, R.B.S.M.N. Mydin, S. Kalakotla, Q.B. Jarrar, Potential application of resveratrol in nanocarriers against cancer: Overview and future trends, J. Drug Deliv. Sci. Tec. (2019) 101187.
[6] M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials, OUP Oxford, Oxford university press, New York,USA, 2001.
[7] X. Zhu, J. Zhou, J. Zhu, Z. Liu, Y. Li, T.A. Kassab, Structural Characterization and Optical Properties of Perovskite ZnZrO3 Nanoparticles, J. Am. Ceram. Soc. 97(6) (2014), 1987 – 1992.
[8] X. Zhu, Perovskite nanopowders: synthesis, characterization, properties and applications. Chem. Inform. 42(31) (2011), 1 – 67.
[9] N.A. Noor, M. Rashid, G.M. Mustafa, M.I. Khan, A. Mahmood, S.M. Ramay, Study of pressure induced physical properties of ZnZrO3 perovskite using density functional theory, Chem. Phys. Lett. (2020), 137601.
[10] M.H. Habibi, E. Askari, Fabrication and Spectral Properties of Zinc Zirconate Nanorod Composites by Sol-Gel Method for Optical Applications: Effect of Chloride and Oxychloride Precursors and Sintering Temperature on Band Gap, Synth. React. Inorg. M. 45(2) (2014), 281–285.
[11] M.K. Musembi, F.B. Dejene, Investigation of the effect of precursor ratios on the solution combustion synthesis of zinc zirconate nanocomposite, Heliyon. 5(12) (2019), e03028.
[12] W. Qiu, Y. Zheng, K.A. Haralampides, Study on a novel POM-based magnetic photocatalyst: photocatalytic degradation and magnetic separation. Chem. Eng. 125(3) (2017), 165 – 176.
[13] M.H. Habibi, E. Askari, M. Habibi, M. Zendehdel, Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell, Spectrochim. Acta. A. 104 (2013), 197 – 202.
[14] M.H. Habibi, E. Askari, Spectrophotometric studies of photo-induced degradation of Tertrodirect Light Blue (TLB) using a nanostructure zinc zirconate composite, J. Ind. Eng. Chem. 19(4) (2013), 1400 – 1405.
[15] M.H. Habibi, E. Askari, Thermal and structural studies of zinc zirconate nanoscale composite derived from sol–gel process. J. Therm. Anal. Calorim. 111(1) (2012), 227 – 233.
[16] M.H. Habibi, E. Askari, Spectrophotometric studies of photo-induced degradation of Tertrodirect Light Blue (TLB) using a nanostructure zinc zirconate composite, J. Ind. Eng. Chem. 19(4) (2013), 1400 – 1405.
[17] P. Kumar, Organic solar cells: device physics, processing, degradation, and prevention, CRC press, Boca Raton, Florida, USA, 2016.
[18] Z. Liu, P.You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes, Nano Energy. 28 (2016), 151 – 157.
[19] Q. Sun, X. Shi, X. Wang, Y. Zhai, L. Gao, Z. Li, Y. Hao, Y. Wu, Ethanol vapor phase reduced electrospun CuO NWs networks as transparent electrodes in perovskite solar cells, Org. Electron. (2019), 105428.
[20] K. Santhi, C. Rani, S. Karuppuchamy, Synthesis and characterization of a novel SnO/SnO2 hybrid photocatalyst, J. Alloys Compd. 662 (2016), 102 – 107.
[21] R. Xu, K. Yang, Y. Zang, ZnO/Ag/ZnO multilayer transparent electrode for highly-efficient ITO-Free polymer solar cells, Curr. Appl. Phys. (2020).
[22] D. Barman, B.K. Sarma, Thin and flexible transparent conductors with superior bendability having Al-doped ZnO layers with embedded Ag nanoparticles prepared by magnetron sputtering, Vacuum (2020), 109367.
[23] A. Moradzadeh, A.R. Mahjoub, M.A.S. Sadjadi, N. Farhadyar, Preparation, characterization and photocatalytic degradation of Congo Red by ZnZrO3/ZnO/ZrO2. International Journal of Nano Dimension, Int. J. Nano. 11(1) (2020), 32 – 40.
[24] M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films, 516(8) (2008), 2017 – 2021.
[25] G. Tian, J. Huang, T. Wang, H. He, J. Shao, Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature, Appl. Surf. Sci., 239(2) (2005), 201 – 208.
[26] J.H. Lee, P. Lin, J.C. Ho, C.C. Lee, Chemical Solution Deposition of Zn1− x ZrxO Thin Films as Active Channel Layers of Thin-Film Transistors. Electrochem. Solid-State Lett. 9(4) (2006),
G117 – G120.
[27] A.K. Jazmati, B. Abdallah, Optical and structural study of ZnO thin films deposited by RF magnetron sputtering at different thicknesses: a comparison with single crystal, Mater. Res. 21(3) (2018).
[28] M.H. Habibi, E. Askari, Spectrophotometric studies of photo-induced degradation of Tertrodirect Light Blue (TLB) using a nanostructure zinc zirconate composite, J. Ind. Eng. Chem. 19(4) (2013), 1400 – 1405.
[29] W. Kleber, H. Neels, Crystal Research and Technology, Cryst. Res. Technol, 46(6) (2011),
542 – 554.
[30] S. Thaowonkaew, N. Khottoommee, W Chao-moo, A. Vora-ud, Investigation on optical and and application of ZnO thin film, J. Mater. Sci. Appl. Energy. 5(2) (2016), 52 – 55.
[31] W. Chao-moo, Transparent Thin Film Thermoelectric Properties of Ti-Zn-O, M.Sc. (Physics). Sakon Nakhon Rajabhat University, Sakon Nakhon, 2019.
[32] A. Vora-ud, T. Seetawan, W. Somkhunthot, N. Pimpabute, Investigation on the enhancement of the thermoelectric power factor of ZnO thin films by Al-doping using asymmetric bipolar pulsed-DC magnetron sputtering technology. Energy Procedia. 61 (2014), 2355 – 2358.
[33] A.S.S. Reddy, I.V. Kityk, V.R. Kumar, J. Jedryka, K. Ozga, N. Venkatramaiah, N. Veeraiah, Third order nonlinear optical effects of ZnO–ZrO2–B2O3 glass ceramics embedded with ZnZrO3 perovskite crystal phases. J. Mater. Sci. Mater. Electron. 28(21) (2017), 16403 – 16414.
[34] A.S.S. Reddy, M. Kostrzewa, A. Ingram, Positron annihilation exploration of voids in zinc zirconium borate glass ceramics entrenched with ZnZrO3 perovskite crystal phases, J. Eur. Ceram. Soc. 38(4) (2018), 2010 – 2016.
[35] L. Alexander, H.P. Klug, Determination of Crystallite Size with the X‐Ray Spectrometer. Int. J. Appl. Phys. 21(2) (1950), 137 – 142.
[36] Z. Khusaimi, M.H. Mamat, N. Abdullah, M. Rusop, ZnO Nanoparticles on Si, Si/Au, and Si/Au/ZnO Substrates by Mist-Atomisation, Journal of Nanomaterials, 2012 (2012), 1 – 8.
[37] N. Khottummee, S.K.K. Aung, T.Seetawan. Synthesis and Optical Properties of Porous CZTS Films Deposited by Dip Coating Technique, IJRERD. 03(01) (2018), 18 – 24.
he art of writing a scientific article 4, SNRUJST. 100 (2017) 64 – 69.