Transparent Thin Film of Zinc Zirconate Deposited by DC Magnetron Sputtering Technique
Keywords:
ZnZrO3, DC magnetron sputtering, thin film, perovskite, transparentAbstract
ZnZrO3 thin film was deposited by the non-reactive DC magnetron sputtering technique on glass substrates using ZnO and ZrO2 composite target of with a mass ratio of 90:10. The composited target was pressed at a pressure of 25 MPa. The deposition process was operated with the non-reactive method and heat treatment film in the air at a temperature of about 400 ̊C for 1 h. The X-ray diffraction patterns revealed cubic perovskite phases of ZnZrO3. The surface morphology was observed distribution of nano-granular and thickness of about 231 nm. The ZnZrO3 thin film was exhibited high transparency of about 95.46% in the visible region and optical gap energy of about 3.27 eV. The results of this research promise can develop transparent film for solar cell applications in the future.
References
[2] J. Diekmann, P. Caprioglio, D. Rothhardt, M. Arvind, T. Unold, T. Kirchartz, D. Neher, M. Stolterfoht, Pathways towards 30% efficient perovskite solar cells, arXiv.1910.07422 (2019).
[3] A. Chilvery, S. Palwai, P. Guggilla, K. Wren, Perovskite Materials: Recent Advancements and Challenges. In Perovskite Materials, Devices and Integration, IntechOpen, 2019.
[4] R.E. Terry, Ronald E. Encyclopedia of Physical Science and Technology, (18) 3rd ed. Academic Press: San Diego, CA, USA, 2001.
[5] S. Moshawih, R.B.S.M.N. Mydin, S. Kalakotla, Q.B. Jarrar, Potential application of resveratrol in nanocarriers against cancer: Overview and future trends, J. Drug Deliv. Sci. Tec. (2019) 101187.
[6] M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials, OUP Oxford, Oxford university press, New York,USA, 2001.
[7] X. Zhu, J. Zhou, J. Zhu, Z. Liu, Y. Li, T.A. Kassab, Structural Characterization and Optical Properties of Perovskite ZnZrO3 Nanoparticles, J. Am. Ceram. Soc. 97(6) (2014), 1987 – 1992.
[8] X. Zhu, Perovskite nanopowders: synthesis, characterization, properties and applications. Chem. Inform. 42(31) (2011), 1 – 67.
[9] N.A. Noor, M. Rashid, G.M. Mustafa, M.I. Khan, A. Mahmood, S.M. Ramay, Study of pressure induced physical properties of ZnZrO3 perovskite using density functional theory, Chem. Phys. Lett. (2020), 137601.
[10] M.H. Habibi, E. Askari, Fabrication and Spectral Properties of Zinc Zirconate Nanorod Composites by Sol-Gel Method for Optical Applications: Effect of Chloride and Oxychloride Precursors and Sintering Temperature on Band Gap, Synth. React. Inorg. M. 45(2) (2014), 281–285.
[11] M.K. Musembi, F.B. Dejene, Investigation of the effect of precursor ratios on the solution combustion synthesis of zinc zirconate nanocomposite, Heliyon. 5(12) (2019), e03028.
[12] W. Qiu, Y. Zheng, K.A. Haralampides, Study on a novel POM-based magnetic photocatalyst: photocatalytic degradation and magnetic separation. Chem. Eng. 125(3) (2017), 165 – 176.
[13] M.H. Habibi, E. Askari, M. Habibi, M. Zendehdel, Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell, Spectrochim. Acta. A. 104 (2013), 197 – 202.
[14] M.H. Habibi, E. Askari, Spectrophotometric studies of photo-induced degradation of Tertrodirect Light Blue (TLB) using a nanostructure zinc zirconate composite, J. Ind. Eng. Chem. 19(4) (2013), 1400 – 1405.
[15] M.H. Habibi, E. Askari, Thermal and structural studies of zinc zirconate nanoscale composite derived from sol–gel process. J. Therm. Anal. Calorim. 111(1) (2012), 227 – 233.
[16] M.H. Habibi, E. Askari, Spectrophotometric studies of photo-induced degradation of Tertrodirect Light Blue (TLB) using a nanostructure zinc zirconate composite, J. Ind. Eng. Chem. 19(4) (2013), 1400 – 1405.
[17] P. Kumar, Organic solar cells: device physics, processing, degradation, and prevention, CRC press, Boca Raton, Florida, USA, 2016.
[18] Z. Liu, P.You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes, Nano Energy. 28 (2016), 151 – 157.
[19] Q. Sun, X. Shi, X. Wang, Y. Zhai, L. Gao, Z. Li, Y. Hao, Y. Wu, Ethanol vapor phase reduced electrospun CuO NWs networks as transparent electrodes in perovskite solar cells, Org. Electron. (2019), 105428.
[20] K. Santhi, C. Rani, S. Karuppuchamy, Synthesis and characterization of a novel SnO/SnO2 hybrid photocatalyst, J. Alloys Compd. 662 (2016), 102 – 107.
[21] R. Xu, K. Yang, Y. Zang, ZnO/Ag/ZnO multilayer transparent electrode for highly-efficient ITO-Free polymer solar cells, Curr. Appl. Phys. (2020).
[22] D. Barman, B.K. Sarma, Thin and flexible transparent conductors with superior bendability having Al-doped ZnO layers with embedded Ag nanoparticles prepared by magnetron sputtering, Vacuum (2020), 109367.
[23] A. Moradzadeh, A.R. Mahjoub, M.A.S. Sadjadi, N. Farhadyar, Preparation, characterization and photocatalytic degradation of Congo Red by ZnZrO3/ZnO/ZrO2. International Journal of Nano Dimension, Int. J. Nano. 11(1) (2020), 32 – 40.
[24] M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films, 516(8) (2008), 2017 – 2021.
[25] G. Tian, J. Huang, T. Wang, H. He, J. Shao, Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature, Appl. Surf. Sci., 239(2) (2005), 201 – 208.
[26] J.H. Lee, P. Lin, J.C. Ho, C.C. Lee, Chemical Solution Deposition of Zn1− x ZrxO Thin Films as Active Channel Layers of Thin-Film Transistors. Electrochem. Solid-State Lett. 9(4) (2006),
G117 – G120.
[27] A.K. Jazmati, B. Abdallah, Optical and structural study of ZnO thin films deposited by RF magnetron sputtering at different thicknesses: a comparison with single crystal, Mater. Res. 21(3) (2018).
[28] M.H. Habibi, E. Askari, Spectrophotometric studies of photo-induced degradation of Tertrodirect Light Blue (TLB) using a nanostructure zinc zirconate composite, J. Ind. Eng. Chem. 19(4) (2013), 1400 – 1405.
[29] W. Kleber, H. Neels, Crystal Research and Technology, Cryst. Res. Technol, 46(6) (2011),
542 – 554.
[30] S. Thaowonkaew, N. Khottoommee, W Chao-moo, A. Vora-ud, Investigation on optical and and application of ZnO thin film, J. Mater. Sci. Appl. Energy. 5(2) (2016), 52 – 55.
[31] W. Chao-moo, Transparent Thin Film Thermoelectric Properties of Ti-Zn-O, M.Sc. (Physics). Sakon Nakhon Rajabhat University, Sakon Nakhon, 2019.
[32] A. Vora-ud, T. Seetawan, W. Somkhunthot, N. Pimpabute, Investigation on the enhancement of the thermoelectric power factor of ZnO thin films by Al-doping using asymmetric bipolar pulsed-DC magnetron sputtering technology. Energy Procedia. 61 (2014), 2355 – 2358.
[33] A.S.S. Reddy, I.V. Kityk, V.R. Kumar, J. Jedryka, K. Ozga, N. Venkatramaiah, N. Veeraiah, Third order nonlinear optical effects of ZnO–ZrO2–B2O3 glass ceramics embedded with ZnZrO3 perovskite crystal phases. J. Mater. Sci. Mater. Electron. 28(21) (2017), 16403 – 16414.
[34] A.S.S. Reddy, M. Kostrzewa, A. Ingram, Positron annihilation exploration of voids in zinc zirconium borate glass ceramics entrenched with ZnZrO3 perovskite crystal phases, J. Eur. Ceram. Soc. 38(4) (2018), 2010 – 2016.
[35] L. Alexander, H.P. Klug, Determination of Crystallite Size with the X‐Ray Spectrometer. Int. J. Appl. Phys. 21(2) (1950), 137 – 142.
[36] Z. Khusaimi, M.H. Mamat, N. Abdullah, M. Rusop, ZnO Nanoparticles on Si, Si/Au, and Si/Au/ZnO Substrates by Mist-Atomisation, Journal of Nanomaterials, 2012 (2012), 1 – 8.
[37] N. Khottummee, S.K.K. Aung, T.Seetawan. Synthesis and Optical Properties of Porous CZTS Films Deposited by Dip Coating Technique, IJRERD. 03(01) (2018), 18 – 24.
he art of writing a scientific article 4, SNRUJST. 100 (2017) 64 – 69.