Flexible Thermoelectric Thin Film Devices

Main Article Content

Chatchavit Seetawan
Atiwat Seetawan
Chutpong Paiyasen
Phannomphan Chaiyapet
Somporn Thaowankaew
Pennapa Muthitamongkol
Urai Seetawan

Abstract

Flexible thermoelectric devices (F-TEDs) thin film has been converted heat from chest skin energy to electrical energy. We proposed the novel uni-leg TEDs thin film using a polyimide (PIM) flexible substrate as low thermal conductivity and minimize heat losses, n-Bi2Te3 thermoelement very good properties at low temperature and Ag electrode thin films as non-oxidization fabricated by DC magnetron sputtering method and annealed this film at 473 K for 8 min. The F-TEG thin film placed on chest skin has been generated maximum output electrical voltage 8.90 mV and electrical power 1.20 μW cm2 at different temperature between the chest skin and ambient air about 5 − 7 K.

Downloads

Download data is not yet available.

Article Details

How to Cite
Seetawan, C., Seetawan, A., Paiyasen, C., Chaiyapet, P., Thaowankaew, S., Muthitamongkol, P., & Seetawan, U. (2020). Flexible Thermoelectric Thin Film Devices. SNRU Journal of Science and Technology, 12(2), 155-163. Retrieved from https://ph01.tci-thaijo.org/index.php/snru_journal/article/view/225293
Section
Research Article

References

[1] M. Gao, L. Li, Y. Song, Inkjet printing wearable electronic devices, J. Mater. Chem. C. 5 (2017) 2971 − 2993.
[2] A. Dewan, U.A. Suat, M.N. Karim, H. Beyenal, Alternative power sources for remote sensors: A review, J. Power Sources. 245 (2014) 129 − 143.
[3] E.B. Lon, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Sci. 31 (2008) 1457 − 1460.
[4] F.J. DiSalvo, Thermoelectric Cooling and Power Generation, Sci. 285 (1999) 703 − 706.
[5] K.V. Selvan, M.S.M. Ali, Micro-scale energy harvesting devices: Review of methodological performances in the last decade, Renew. Sust. Energ. Rev. 54 (2016) 1035 − 1074.
[6] J.P. Carmo, L.M. Gonçalves, J.H. Correia, Thermoelectric Microconverter for Energy Harvesting Systems, IEEE T. Ind. Electron. 57 (2010) 861 − 867.
[7] M. Lossec, B. Multon, H.B. Ahmed, Sizing optimization of a thermoelectric generator set with heatsink for harvesting human body heat, Energ. Convers. and Manage. 68 (2013) 260 − 265.
[8] M. Wahbah, M. Alhawari, B. Mohammad, H. Saleh, M. Ismail, Characterization of Human Body-Based Thermal and Vibration Energy Harvesting for Wearable Devices, IEEE J. Em. Sel. Top. C. 4 (2014) 354 − 363.
[9] Y. Qi, C. McAlpine, Nanotechnology-enabled flexible and biocompatible energy harvesting, Energy Environ. Sci. 3 (2010) 1275 − 1285.
[10] V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J.S. Jur, J. Lach, B. Lee, J. Muth, O. O ̈mer, 
M. O ̈ztu ̈rk, S. Trolier-McKinstry, D. Vashaee, D. Wentzloff, Y. Zhu, Flexible Technologies for Self-Powered Wearable Health and Environmental Sensing, Proc. IEEE. 3 (2015) 665 − 681.
[11] V. Leonov, R.J.M. Vullers, Wearable Thermoelectric Generators for Body-Powered Devices, J. Electron. Mater. 38 (2009) 1491 − 1498.
[12] J. H. Bahk, H. Fang, K. Yazawa, A. Shakouria, Flexible thermoelectric materials and device optimization for wearable energy harvesting, J. Mater. Chem. C. 3 (2015) 10362 − 10374.
[13] I. Stark, Thermal Energy Harvesting with Thermo Life, International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge. 3 – 5 April 2006, 19 – 22.
[14] S.E. Jo, M.K. Kim, M.S. Kim, Y.J. Kim, Flexible thermoelectric generator for human body heat energy harvesting, Electron. Lett. 48 (2012) 1015 − 1016.
[15] Y. Du, J. Xu, B. Paul, P. Eklund, Flexible thermoelectric materials and devices, Appl. Mater. Today. 12 (2018) 366 − 388.
[16] S.J. Kim, W.J. Hyung, B.J. Cho, Wearable Thermoelectric Generator Fabricated on Glass Fabric, Energ. & Environ. Sci. 7 (2014) 1959 − 1967.
[17] S.J. Kim, H.E. Lee, H. Choi, Y. Kim, J.H. We, J.S. Shin, K.J. Lee, B.J. Cho, High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process, ACS Nano 10 (2016) 10851 − 10857.
[18] M. Lossec, B. Multon, H.B. Ahmed, C. Goupil, Thermoelectric generator placed on the human body: system modeling and energy conversion improvements, Eur. Phys. J. Appl. Phys. 52 (2010) 11103 − 11113.
[19] T. Krishna, L.H Seittaluri, J.R. Rajeev, Thin Thermoelectric Generator System for Body Energy Harvesting, J. Electron. Mater. 41 (2012) 984 − 988.
[20] F. Suarez, A. Nozariasbmarz, D. Vashaee, C. M. Öztürk, Designing Thermoelectric Generators for Self- Powered Wearable Electronics, Energ. Environ. Sci. 6 (2016) 1853 − 1890.
[21] S. Qing, A. Rezania, L.A. Rosendahl, X. Gou, Design of flexible thermoelectric generator as human body sensor, Proc. Mater. Today. 5 (2018) 10338 − 10346.
[22] N.H. Trung, N.V. Toan, T. Ono, Fabrication of type flexible thermoelectric generators using an electrochemical deposition method for thermal energy harvesting applications at room temperature, J. Micromech. and Microeng. 27 (2017) 125006.
[23] E. Vieira, J. Figueira, A.L. Pires, J. Grilo, M.F. Silra, A.M. Pereira, L.M. Goncalves, Bi2Te3 and Sb2Te3 Thin Films with Enhanced Thermoelectric Properties for Flexible Thermal Sensors, Eurosensors 2018, Graz, Austria. 9 – 12 September 2018, 815 − 819.
[24] J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, TEM Sample Preparation and FIB-Induced Damage, MRS. Bull. 32 (2007) 400 − 407.