สมบัติของคอนกรีตมวลรวมหินควอร์ตไซต์ผสมเถ้าปาล์มนํ้ามันมีนํ้าหนัก สูญหายหลังเผาสูง (Properties of Quartzite Aggregate Concrete Blended with Oil Palm Ash with High Loss on Ignition)

Main Article Content

ดนุพล ตันนโยภาส
ศรวิษฐ ลิขิตวานิช
นันทวิทย์ ชัยวิชิต

Abstract

บทคัดย่อ


การศึกษาเชิงทดลองครั้งนี้เพื่อศึกษาสมบัติของคอนกรีตมวลรวมส่วนใหญ่เป็นหินควอร์ตไซต์จากเหมือง
ดีบุกเก่าผสมเถ้าปาล์มนํ้ามัน ทดสอบสมบัติมวลรวม ได้แก่ ความหนาแน่นหลวมและความหนาแน่นแน่น
การคละขนาด ความถ่วงจำเพาะ การดูดซึมนํ้า ดัชนีความแบนและดัชนีความยาว การขัดสีแบบ
ลอสแองเจลิส ค่ากระแทก กำลังแรงกดจุด ส่วนเถ้าปาล์มนํ้ามันที่มีนํ้าหนักสูญหายหลังเผาสูงแทนที่
ปูนซีเมนต์ปอร์ตแลนด์ประเภทที่ 1 ในอัตราส่วน 10 20 และ 30% โดยนํ้าหนัก มีอัตราส่วนนํ้าต่อวัสดุ
ประสาน 0.45 คงที่ตลอดการทดลอง หล่อคอนกรีตทรงลูกบาศก์ขนาด 10 x 10 x 10 เซนติเมตร
ไม่บ่มนํ้า และบ่มนํ้าที่ 7 และ 28 วัน ครบกำหนดนำตัวอย่างคอนกรีตทดสอบ ความหนาแน่นรวม
การดูดซึมนํ้า ความแข็งแบบชอร์ ความต้านทานไฟฟ้า ทนทานต่อแมกนีเซียมซัลเฟตกำลังอัด และ
วิเคราะห์แร่ด้วยวิธีการเลี้ยวเบนรังสีเอกซ์และโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด
ผลศึกษาครั้งนี้ได้คอนกรีตผสมเถ้าปาล์มนํ้ามัน 10% อายุบ่ม 28 วัน มีกำลังอัด 67.55 เมกะพาสคัล
ความทนทานต่อแมกนีเซียมซัลเฟตของคอนกรีตผสมเถ้าปาล์มค่อนข้างตํ่ากว่าของคอนกรีตควบคุม


Abstract


In this experimental investigation was carried out the properties of concrete containing
waste rock aggregate which had mostly quartzite from former tin mine blended with
oil palm ash (OPA). Aggregate property tests were conducted on loose and dense density,
fineness modulus, specific gravity, water absorption, flakiness and elongation index,
Los Angeles abrasion, impact value, and point load strength. OPA with high loss on
ignition was used as a pozzolanic material partially replaced ordinary Portland cement
type 1 in proportion of 10, 20 and 30wt.%. The water to binder ratio 0.45 was kept
constant throughout this study. The concrete specimen used in this study was cubic
with the size of 10 x 10 x 10 cm and classified as non-curing and cured in water for 7
and 28 days. The concrete specimens were tested on bulk density, water absorption,
Shore hardness, electrical resistance, compressive strength and magnesium sulfate
durability. Also, scanning electron microscope was used to analyze microstructure
and mineral phase via X-ray diffraction. From this studied result, it was provided
that the 28-day compressive strength of concrete blended with 10% OPA was 67.55 MPa.
Magnesium sulfate durability of concrete blended with OPA was rather lower than control concrete.

Article Details

How to Cite
[1]
ตันนโยภาส ด., ลิขิตวานิช ศ., and ชัยวิชิต น., “สมบัติของคอนกรีตมวลรวมหินควอร์ตไซต์ผสมเถ้าปาล์มนํ้ามันมีนํ้าหนัก สูญหายหลังเผาสูง (Properties of Quartzite Aggregate Concrete Blended with Oil Palm Ash with High Loss on Ignition)”, RMUTI Journal, vol. 9, no. 1, pp. 82–102, May 2016.
Section
Research article

References

Abdullahi, M. (2012). Effect of aggregate type on compressive strength of concrete.
International Journal of Civil and Structural Engineering. Vol. 2. No 3. pp. 791-800

ACI 318-05/318R-05. (2005). Building code requirements for structural concrete and
commentary. American Concrete Institute. Detroit. USA

Adom-Asamoah, M., Tuffour, Y. A., Afrifa, R. O. and Kankam, C. K. (2014). Strength
characteristics of hand-quarried partially-weathered quartzite aggregates in
concrete. American Journal of Civil Engineering. Vol. 2. No. 5. pp. 134-142

ASTM C29/C29M-09. (2009). Standard test method for bulk density (“unit weight”) and
voids in aggregate. West Conshohocken, Pennsylvania

ASTM C33/C33M-13. (2013). Standard specification for concrete aggregates. West
Conshohocken, Pennsylvania

ASTM C127-04. (2004). Test method for density, relative density (specific gravity), and
absorption of coarse aggregate. West Conshohocken, Pennsylvania

ASTM C128-12. (2012). Test method for density, relative density (specific gravity), and
absorption of fine aggregate. West Conshohocken, Pennsylvania

ASTM C131/C131M-14. (2014). Standard test method for resistance to degradation
of small-size coarse aggregate by abrasion and impact in the Los Angeles
machine. West Conshohocken, Pennsylvania

ASTM C136-06. (2006). Standard test method for sieve analysis of fine and coarse
aggregates. West Conshohocken, Pennsylvania

ASTM C138/C138M-14. (2014). Standard test method for density (unit weight), yield,
and air content (gravimetric) of concrete. West Conshohocken, Pennsylvania

ASTM C142/C142M-10. (2010). Standard test method for clay lumps and friable particles
in aggregates. West Conshohocken, Pennsylvania

ASTM C191-13. (2013). Standard test methods for time of setting of hydraulic cement
by Vicat needle. West Conshohocken, Pennsylvania

ASTM C192/C192M-14. (2014). Standard practice for making and curing concrete test
specimens in the laboratory. West Conshohocken, Pennsylvania

ASTM C494/C494M. (2013). Standard specification for chemical admixtures for concrete.
West Conshohocken, Pennsylvania

ASTM C618. (2012). Standard specifi- cation for coal fly ash and raw or calcined natural
pozzolan for use in concrete. West Conshohocken, Pennsylvania

ASTM C1218/C1218M-99. (2008). Standard test method for water-soluble chloride in
mortar and concrete. West Conshohocken, Pennsylvania

ASTM D5370-14. (2014). Standard specification for pozzolanic blended materials in
construction applications. West Conshohocken, Pennsylvania

BS EN 933-3. (2012). Tests for geometrical properties of aggregates Part 3: Determination
of particle shape-flakiness index. British Standards Institution. London

BS EN 933-4: 2008. (2009). Tests for geometrical properties of aggregates Part 4:
Determination of particle shape - shape index. British Standards Institution. London

BS 812-112. (1990). Testing aggregates - method for determination of aggregate impact
value (AIV). British Standards Institution. London

Freidin, C. (1999). Behaviour of silica-concrete based on quartz bond in sulphuric acid.

Cement & Concrete Composites. Vol. 21. pp. 317-323

Gao X. X., Cyr M., Multon S. and Sellier, A. (2013). A comparison of methods for chemical
assessment of reactive silica in concrete aggregates by selective dissolution. Cement &
Concrete Composites. Vol. 37. pp. 82-94

Hong, L., Gu, X. and Feng, L. (2014). Influence of aggregate surface roughness on mechanical
properties of interface and concrete. Construction and Building Materials. Vol. 65.
pp. 338-349

ISRM. (2007). The complete ISRM suggested methods for rock characterization, testing
and monitoring: 1974-2006, Ulusay R. and Hudson J.A. ed.

Kilic, A., Atis, C. D., Teymen, A., Karahan, O., Ozcan, F., Bilim, C. and Ozdemir, M. (2008).
The influence of aggregate type on the strength and abrasion resistance of high
strength concrete. Cement & Concrete Composites. Vol. 30. Issue. 4. pp. 290-296

Neville, A. M. (2011). Properties of concrete. 5th ed. Pearson. Education Limited. England

SDPT. 1202-07. (2007). Standard test method for resistance to degradation of coarse
Aggregate by abrasion and impact in the Los Angeles machine. Department of
Public Works and Town & Country Planning. Ministry of Interior (in Thai)

SDPT. 1322-07. (2007). Standard specification for durability and service life of concrete.
Department of Public Works and Town & Country Planning. Ministry of Interior
(in Thai)

Suntharanurak, J. and Tonnayopas, D. (2014). Strength development and sulfate durability
of waste clear bottle glass aggregate concrete containing sugarcane bagasse ash.
Journal of Industrial Technology. Vol. 10. No. 1. pp. 63-75 (in Thai)

Tonnayopas, D. (2010). Minerals and rocks. 1st ed. Dept. of Mining and Materials
Engineering. Prince of Songkla University. p. 344 (in Thai)

Tonnayopas, D. (2012). Manual laboratory of engineering geology. 3rd ed., Dept. of
Mining and Metallurgical Engineering. Prince of Songkla University. p. 100 (in Thai)

Tonnayopas, D., Masniyom, M. and Laopreechakul, S. (2004). Influence of oil palm shell
fuel ash on strength and durability of mortar. The 3rd PSU Engineering Conf.,
8-9 Dec. 2004. Prince of Songkla University. pp. MN1-MN6. (in Thai)

Tonnayopas, D., Chankeaw, P., and Maneedap, W. (2006). Behaviour of cement paste
blended with rice husk ash and oil palm fiber fuel ash by using attritor mill.

Proceedings of the 11th National Convention on Civil Engineering. May 20-22, 2005,
Merlin Beach Resort Hotel, Phuket, Thailand, p. 6 (in Thai)

Tonnayopas, D. and Laopreechakul, S. (2006). Utilization of oil palm shell ash as mineral
admixture in Portland cement mortar, In Proc. 1st Inter. Conf. Hazardous Waste
Management for a Sustainable Future. p. 7. Bangkok : Century Park Hotel

Tonnayopas, D., Nilrat, F., Putto, K. and Tantiwitayawanich, J. (2006). Effect of oil palm
fiber fuel ash on compressive strength of hardening concrete. In Proc. 4th Thailand
Materials Science and Technology Conf. pp. 64-66. Pathumthani : Thailand Science
Park Convention Center

Torrijos, M. C., Giaccio, G. and Zerbino, R. (2013). Mechanical and transport properties
of 10 years old concretes prepared with different coarse aggregates. Construction
and Building Materials. Vol. 44. pp. 706-715

Wu, K.-R., Chen, B., Yao, W. and Zhang, D. (2001). Effect of coarse aggregate type
on mechanical properties of high-performance concrete. Cement and Concrete
Research. Vol. 31. Issue 2. pp. 1421-1425

Yellishetty, M., Karpe V., Reddy, E. H., Subhash, K. N. and Ranjith, P. G. (2008). Reuse
of iron mineral wastes in civil engineering constructions. Resources, Conservation
and Recycling. Vol. 52. No. 11. pp. 1283-1289