Classification-based CNNs of Thai Native Chickens

Main Article Content

Sujitra Thipsrirach
Yingyos Thipsrirach

Abstract

This paper presents the use of deep learning network-based Convolutional Neural Networks (CNNs) to enhance the efficiency of classifying purebred Thai native chickens for conservation purposes. This study specifically focuses on Thai native chicken species known as Leung Hang Khao. Due to the significant genetic diversity of the Thai native chickens, it typically requires experts to accurately identify the breeds. There are four groups of the Thai native chickens that were considered in this work; namely, purebred Leung Hang Khao male, purebred Leung Hang Khao female, crossbred male, and crossbred female. A total of 1,000 images have been collected, in which 250 images are from each group. Then, the data is divided into three sets which are training set, validation set, and testing set, in the ratios of 60:20:20, 70:20:10, and 80:10:10, respectively. Four architectures of the CNNs have been employed for verification, i.e., LeNet-5, CNN1, CNN2, and CNN3, with epochs set at 10, 20, and 50 epochs for each architecture. The results show that the CNN1 architecture with an 80:10:10 ratio and 10 epochs yielded the highest accuracy in learning, validation, testing, and prediction. Moreover, it required relatively less testing time with predicted accurate results of 100 %. The obtained results demonstrate that using the deep learning network-based convolutional neural network with a simple architecture setting can effectively classify Thai native chicken breeds.

Article Details

How to Cite
[1]
S. Thipsrirach and Y. Thipsrirach, “Classification-based CNNs of Thai Native Chickens”, RMUTI Journal, vol. 18, no. 3, pp. 1–20, Dec. 2025.
Section
Research article

References

Arias-Duart, A., Mariotti, E., Garcia-Gasulla, D. and Alonso-Moral, J.M. (2023). A Confusion Matrix for Evaluating Feature Attribution Methods. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 3709-3714. http://doi.org/10.1109/CVPRW59228.2023.00380

Buranawit, K., Chailungka, C., Wongsunsri, C. and Laenoi, W. (2016). Phenotypic Characterization of Thai Native Black-Bone Chickens Indigenous to Northern Thailand. The Thai Journal of Veterinary Medicine, 46(4), 547-554. https://he01.tci-thaijo.org/index.php/tjvm/article/view/73774/59525

Dorji, N. and Sunar, S. (2014). Morphometric Variations Among Five Bhutanese Indigenous Chickens (Gallus domesticus). Journal of Animal and Poultry Sciences, 3(3), 76-85.

Dorji, N., Duangjinda, M. and Phasuk, Y. (2012). Genetic Characterization of Bhutanese Native Chickens Based on an Analysis of Red Junglefowl (Gallus gallus gallus and Gallus gallus spadecieus), Domestic Southeast Asian and Commercial Chicken Lines (Gallus gallus domesticus). Genetics and Molecular Biology, 35(3), 603-609. https://doi.org/10.1590/S1415-47572012005000039

Fumihito, A., Miyake, T., Sumi, S.i., Takada, M., Ohno, S. and Kondo, N. (1994). One Subspecies of the Red Junglefowl (Gallus gallus gallus) Suffices as the Matriarchic Ancestor of All Domestic Breeds. Proceedings of the National Academy of Sciences, 91(26), 12505-12509. https://doi.org/10.1073/pnas.91.26.12505

Hansen, M.F., Smith, M.L., Smith, L.N., Salter, M.G., Baxter, E.M., Farish, M. and Grieve, B. (2018). Towards On-Farm Pig Face Recognition Using Convolutional Neural Networks. Computers in Industry, 98, 145-152. https://doi.org/10.1016/j.compind.2018.02.016

Hata, A., Nunome, M., Suwanasopee, T., Duengkae, P., Chaiwatana, S., Chamchumroon, W., Suzuki, T., Koonawootrittriron, S., Matsuda, Y. and Srikulnath, K. (2021). Origin and Evolutionary History of Domestic Chickens Inferred from a Large Population Study of Thai Red Junglefowl and Indigenous Chickens. Scientific Reports, 11, 2035. https://doi.org/10.1038/s41598-021-81589-7

Katano, T., Shimogiri, T., Kawabe, K. and Okamoto, S. (2011). Genetic Diversity and Population Structure of Indonesian Native Chickens Based on Single Nucleotide Polymorphism Markers. Poultry Science, 90(11), 2471-2478. https://doi.org/10.3382/ps.2011-01450

Khan, R.H., Kang, K.W., Lim, S.J., Youn, S.D., Kwon, O.J., Lee, S.H. and Kwon, K.R. (2020). Animal Face Classification Using Dual Deep Convolutional Neural Betwork. Journal of Korea Multimedia Society, 23(4), 525-538. https://doi.org/10.9717/kmms.2020.23.4.525

Khumpeerawat, P., Duangjinda, M. and Phasuk, Y. (2021). Factors Affecting Gene Expression Associated with the Skin Color of Black-Bone Chicken in Thailand. Poultry Science, 100(11), 101440. https://doi.org/10.1016/j.psj.2021.101440

Kittichai, V., Kaewthamasorn, M., Thanee, S., Jomtarak, R., Klanboot, K., Naing, K.M., Tongloy, T., Chuwongin, S. and Boonsang, S. (2021). Classification for Avian Malaria Parasite Plasmodium gallinaceum Blood Stages by Using Deep Convolutional Neural Networks. Scientific Reports, 11, 16919. https://doi.org/10.1038/s41598-021-96475-5

Krstini´c, D., Braovi´c, M., Šeri´c, L. and Boži´c-Štuli´C,D. (2020). Multi-Label Classifier Performance Evaluation with Confusion Matrix. Computer Science & Information Technology, 1, 1-14. https://doi.org/10.5121/csit.2020.100801

Laenoi, W., Kunkalw, W. and Buranawit, K. (2015). Phenotypic Characterization and Farm Management of Indigenous Chicken Reared in Highland Region of Northern Thailand. Agriculture and Agricultural Science Procedia, 5, 127-132. https://doi.org/10.1016/j.aaspro.2015.08.019

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791

Liu, Y.P., Wu, G.S., Yao, Y.G., Miao, Y.W., Luikart, G., Baig, M., Beja-Pereira, A., Ding, Z.L., Palanichamy, M.G. and Zhang, Y.P. (2006). Multiple Maternal Origins of Chickens: Out of the Asian Jungles. Molecular Phylogenetics and Evolution, 38(1), 12-19. https://doi.org/10.1016/j.ympev.2005.09.014

Mbelwa, H., Machuve, D. and Mbelwa, J. (2021). Deep Convolutional Neural Network for Chicken Diseases Detection. International Journal of Advanced Computer Science and Applications, 12(2), 759-765. https://doi.org/10.14569/IJACSA.2021.0120295

Mekchay, S., Supakankul, P., Assawamakin, A., Wilantho, A., Kluabmongkol, W. and Tongsima, S. (2014). Population Structure of Four Thai Indigenous Chicken Breeds. BMC Genetics, 15, 1-9. https://doi.org/10.1186/1471-2156-15-40

Mou, C., Liang, A., Hu, C., Meng, F., Han, B. and Xu, F. (2023). Monitoring Endangered and Rare Wildlife in the Field: A Foundation Deep Learning Model Integrating Human Knowledge for Incremental Recognition with Few Data and Low Cost. Animals, 13(20), 3168; https://doi.org/10.3390/ani13203168

Muttenthaler, L. and Hebart, M.N. (2021). THINGSvision: a Python Toolbox for Streamlining the Extraction of Activations from Deep Neural Networks. Frontiers in Neuroinformatics, 15, 679838. https://doi.org/10.3389/fninf.2021.679838

Okumura, F., Shimogiri, T., Kawabe, K., Okamoto, S., Nishibori, M., Yamamoto, Y. and Maeda, Y. (2006). Gene Constitution of South-East Asian Native Chickens, Commercial Chickens and Jungle Fowl Using Polymorphisms of Four Calpain Genes. Animal Science Journal, 77(2), 188-195. https://doi.org/10.1111/j.1740-0929.2006.00336.x

Phasouk, A., Sakkatat, P., Kruekum, P. and Fongmul, S. (2021). The Situation of Farmers Rearing Native Chickens in Muang La, Udomxay Province, Laos PDR. Rajabhat Chiang Mai Research Journal, 22(2), 20-34. https://so05.tci-thaijo.org/index.php/cmruresearch/article/view/248813/171660

Pramual, P., Meeyen, K., Wongpakam, K. and Klinhom, U. (2013). Genetic Diversity of Thai Native Chicken Inferred from Mitochondrial DNA Sequences. Tropical Natural History, 13(2), 97-106. https://li01.tci-thaijo.org/index.php/tnh/article/view/103035/82579

Raj, S., Garyali, S., Kumar, S. and Shidnal, S. (2020). Image Based Bird Species Identification Using Convolutional Neural Network. International Journal of Engineering Research & Technology (IJERT), 9(6), 346-351. https://www.ijert.org/research/image-based-bird-species-identification-using-convolutional-neural-network-IJERTV9IS060279.pdf

Ren, Y., Huang, Y., Wang, Y., Zhang, S., Qu, H., Ma, J., Wang, L. and Li, L. (2022). A High-Performance Day-Age Classification and Detection Model for Chick Based on Attention Encoder and Convolutional Neural Network. Animals, 12(18), https://doi.org/10.3390/ani12182425

Rotimi, E., Egahi, J. and Adeoye, A. (2016). Phenotypic Characterization of Indigenous Chicken Population in Gwer-West, Benue State, Nigeria. World Scientific News, 53(3), 343-353.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S. and Müller, K.R. (2016). Evaluating the Visualization of What a Deep Neural Network Has Learned. IEEE Transactions on Neural Networks and Learning Systems, 28(11), 2660-2673. https://doi.org/10.1109/TNNLS.2016.2599820

Sawai, H., Kim, H.L., Kuno, K., Suzuki, S., Gotoh, H., Takada, M., Takahata, N., Satta, Y. and Akishinonomiya, F. (2010). The Origin and Genetic Variation of Domestic Chickens with Special Reference to Junglefowls Gallus g. gallus and G. varius. PloS One, 5(5), https://doi.org/10.1371/journal.pone.0010639

Schork, I., Zamansky, A., Farhat, N., de Azevedo, C.S. and Young, R.J. (2024). Automated Observations of Dogs’ Resting Behaviour Patterns Using Artificial Intelligence and Their Similarity to Behavioural Observations. Animals, 14(7), https://doi.org/10.3390/ani14071109

Shimogiri, T., Nishida, N., Kudo, M., Niwa, K., Nishibori, M., Kinoshita, K., Okamoto, S., Maeda, Y., Tokunaga, K. and Yasue, H. (2012). Genetic Relationships Between Japanese Native and Commercial Breeds Using 70 Chicken Autosomal SNP Genotypes by the DigiTag2 Assay. Animal Genetics, 43(1), 98-103. https://doi.org/10.1111/j.1365-2052.2011.02206.x

Singh, A., Jain, A. and Rai, B.K. (2020). Image Based Bird Species Identification. International Journal of Research in Engineering, IT and Social Sciences, 10(4), 17-24.

Siriwadee, P., Wirot, L., Thanapol, P. and Wirawan, N. (2023). Genetic Diversity Among Five Native Thai Chickens and Khiew-Phalee Chickens in Lower-Northern Thailand Using Mitochondrial DNA Barcodes. Biodiversitas, 24(4), 1962-1970. https://doi.org/10.13057/biodiv/d240404

Sozzi, M., Pillan, G., Ciarelli, C., Marinello, F., Pirrone, F., Bordignon, F., Bordignon, A., Xiccato, G. and Trocino, A. (2023). Measuring Comfort Behaviours in Laying Hens Using Deep-Learning Tools. Animals, 13(1), https://doi.org/10.3390/ani13010033

Thinh, N.H., Tuan, H.A., Dang, P.K. and Doan, B.H. (2015). Multi-Spurred Chicken Breed and Livelihood of Ethnic People in North Vietnam: Characterisation and Prospects. The 1th International conference on Native chicken Journal. February 23-25, Centara Hotel Khon Kaen, Thailand.

Toomey, D. (2018). Learning Jupyter 5: Explore Interactive Computing Using Python, Java, JavaScript, R, Julia, and JupyterLab (2ndEd). Packt Publishing Ltd.

Vanhala, T., Tuiskula-Haavisto, M., Elo, K., Vilkki, J. and Maki-Tanila, A. (1998). Evaluation of Genetic Variability and Genetic Distances Between Eight Chicken Lines Using Microsatellite Markers. Poultry Science, 77(6), 783-790. https://doi.org/10.1093/ps/77.6.783

Villa, A.G., Salazar, A. and Vargas, F. (2017). Towards Automatic wild Animal Monitoring: Identification of Animal Species in Camera-Trap Images Using Very Deep Convolutional Neural Networks. Ecological Informatics, 41, 24-32. https://doi.org/10.1016/j.ecoinf.2017.07.004

Wang, K., Chen, C. and He, Y. (2020). Research on Pig Face Recognition Model Based on Keras Convolutional Neural Network. IOP Conference Series Earth and Environmental Science. 474(3), https://doi.org/10.1088/1755-1315/474/3/032030

Wiyabot, T. and Kiattinarueyut, S. (2022) Development and Identifying Quantitative and Quantities Traits for Breeding of Samae Dam Chicken (Gallus gallus), Thailand: Diversity of Phenotypic Characteristics. Journal of the Hellenic Veterinary Medical Society, 73(4), 4763-4772. https://doi.org/10.12681/jhvms.27405

Xu, N., Ma, Z., Xia, Y., Dong, Y., Zi, J., Xu, D., Xu, F., Su, X., Zhang, H. and Chen, F. (2024). A Serial Multi-scale Feature Fusion and Enhancement Network for Amur Tiger Re-Identification. Animals, 14(7), https://doi.org/10.3390/ani14071106

Yaemkong, S., Phromnoi, S., Mingchai, C. and Jongjitvimol, T. (2024). Characterization of Phenotypic Variation in Indigenous Chicken Populations in Lower Northern Thailand to Improve Chicken Breeding. International Journal of Zoology, 2024, https://doi.org/10.1155/2024/9985076

Yao, Y., Yu, H., Mu, J., Li, J. and Pu, H. (2020). Estimation of the Gender Ratio of Chickens Based on Computer Vision: Dataset and Exploration. Entropy, 22(7), https://doi.org/10.3390/e22070719

Yeamkong, S., Tangmo, S., Howhan, S., Gothom, P., Jaipong, P., Incharoen, T. and Muangtong, S. (2021). Effects of Sesbania Grandiflora (L.) DESV, Spathodea Campanulate (P.) Beauv. and Cochlospermum Regium (L.) Alston. flowers supplementation layer diet on egg production, egg quality and blood parameters. Life Sciences and Environment Journal, 22, 238-251. https://ph01.tci-thaijo.org/index.php/psru/article/view/244717/167534

Zhang, L., Han, G., Qiao, Y., Xu, L., Chen, L. and Tang, J. (2023). Interactive Dairy Goat Image Segmentation for Precision Livestock Farming. Animals, 13(20), https://doi.org/10.3390/ani13203250