On Certain Properties of the Laplace-type Integral Transform Via Post Quantum Calculus

Main Article Content

Sansumpan Jirakulchaiwong
Kamsing Nonlaopon

Abstract

In this paper, we apply the notion of (p,q)-calculus or post quantum calculus to establish theoretical results of (p,q)-analogues of Laplace-type integral transform of the first and second kind, which is a symmetric relation between (p,q)-analogues of the Laplace-type integral and Laplace transforms. Additionally, we discuss (p,q)-analogues of Laplace-type integral transform on various classes of some (p,q)-special functions, (p,q)-exponential function, (p,q)-trigono-metric types, (p,q)-differential operator, and (p,q)-convolution theorem. Finally, we establish results related to (p,q)-Aleph function.

Article Details

How to Cite
[1]
S. Jirakulchaiwong and K. Nonlaopon, “On Certain Properties of the Laplace-type Integral Transform Via Post Quantum Calculus”, RMUTI Journal, vol. 17, no. 2, pp. 96–115, Aug. 2024.
Section
Research article
Author Biography

Kamsing Nonlaopon, Faculty of Science, Khon Kaen University

รศ.ดร.คำสิงห์  นนเลาพล

คณะวิทยาศาสตร์ สาขาวิชา คณิตศาสตร์ มหาวิทยาลัยขอนแก่น

References

Jackson, F. H. (1910). On a q-Definite Integrals. The Quarterly Journal of Pure and Applied Mathematics. Vol. 41, No. 2, pp. 193-203

Jackson, F. H. (1910). q-Difference Equations. American Journal of Mathematics. Vol. 32, No. 4, pp. 305-314. DOI: 10.2307/2370183

Ernst, T. (2012). A Comprehensive Treatment of q-Calculus. Springer: Basel

Aral, A., Gupta, V., and Agarwal, R. P. (2013). Applications of q-Calculus in OperatorTheory. Springer Science + Business Media: New York

Sole, A. D. and Kac, V. (2003). On Integral Representations of q-Gamma and q-Beta Functions. Access (20 January 2023). Available (https://arxiv.org/abs/math/0302032)

Tariboon, J. and Ntouyas, S. K. (2013). Quantum Calculus on Finite Intervals and Applications to Impulsive Difference Equations. Advances in Difference Equations. Vol. 2013, pp. 1-19. DOI: 10.1186/1687-1847-2013-282

Tariboon, J. and Ntouyas, S. K. (2014). Quantum Integral Inequalities on Finite Intervals. Journal of Inequalities and Applications. Vol. 2014, pp, 1-13. DOI: 10.1186/1029-242X-2014-121

Jhanthanam, S., Tariboon, J., Ntouyas, S. K., and Nonlaopon, K. (2019). On q-Hermite-Hadamard Ibequalities for Differentiable Convex Function. Mathematics. Vol. 7, Issue 7, pp. 1-9. DOI: 10.3390/math7070632

Prabseang, J., Nonlaopon, K., and Tariboon, J. (2019). Quantum Hermite-Hadamard Inequalities for Double Integral and q-Differentiable Convex Functions. Journal of Mathematical Inequalities. Vol. 13, No. 3, pp. 675-686. DOI: 10.7153/jmi-2019-13-45

Ahmad, B., Alsaedi, A., and Ntouyas, S. K. (2012). A Study of Second-Order q-Difference Equations with Boundary Conditions. Advances in Difference Equations. Vol. 2012, pp. 1-10. DOI: 10.1186/1687-1847-2012-35

Ahmad, A., Jain, R., and Jain, D. K. (2017). q-Analogue of Aleph-Function and Itstransformation Formula with q-Derivative. Journal of Statistics Applications & Probability. Vol. 6, No. 3, pp. 1-9. DOI: 10.18576/jsap/060312

Ahmad, B., Ntouyas, S. K., and Purnaras, I. K. (2012). Existence Results for Nonlinear q-Difference Equations with Nonlocal Boundary Conditions. Communications in Nonlinear Analysis. Vol. 19, pp. 59-72

Kac, V. and Cheung, P. (2002). Quantum Calculus. Springer-Verlag: New York

Ganie, J. A. and Jain, R. (2020). On a System of q-Laplace Transform of Two Variables with Applications. Journal of Computational and Applied Mathematics. Vol. 366, pp. 1-12. DOI: 10.1016/j.cam.2019.112407

Albayrak, D., Purohit, S. D., and Uçar, F. (2013). On q-Analogues of Sumudu Transform. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica. Vol. 21, No. 1, pp. 239-260. DOI: 10.2478/auom-2013-0016

Chung, W. S., Kim, T., and Kwon, H. I. (2014). On the q-Analog of the Laplace Transform. Russian Journal of Mathematical Physics. Vol. 21, No. 2, pp. 156-168. DOI: 10.1134/S1061920814020034

Al-Omari, S. K. Q. (2018). Certain Results Related to the N-Transform of a Certain Class of Functions and Differential Operators. Advances in Difference Equations. Vol. 2018, pp. 1-14. DOI: 10.1186/s13662-017-1457-y

Al-Omari, S. K. Q. (2020). q-Analogues and Properties of the Laplace-Type Integral Operator in the Quantum Calculus Theory. Journal of Inequalities and Applications. Vol. 2020, pp. 1-14. DOI: 10.1186/s13660-020-02471-0

Al-Omari, S. K. Q. (2021). Estimates and Properties of Certain q-Mellin Transform on Generalized q-Calculus Theory. Advances in Difference Equations. Vol. 2021, pp. 1-15. DOI: 10.1186/s13662-021-03391-z

Uçar, F. and Albayrak, D. (2011). On q-Laplace Type Integral Operators and Their Applications. Journal of Difference Equations and Applications. Vol. 18, Issue 6, pp. 1001-1014. DOI: 10.1080/10236198.2010.540572

Alp, N. and Sarikaya, M. Z. (2023). q-Laplace Transform on Quantum Integral. Kragujevac Journal of Mathematics. Vol. 47, No. 1, pp. 153-164

Al-Khairy, R. T. (2020). q-Laplace Type Transforms of q 2 - Analogues of Bessel Functions. Journal of King Saud University-Science. Vol. 32, No. 1, pp. 563-566. DOI: 10.1016/j.jksus.2018.08.012

Chakrabarti, R. and Jagannathan, R. (1991). A (p,q)-Oscillator Realization of Two-Parameter Quantum Algebras. Journal of Physics A: Mathematical and General. Vol. 24, pp. 711-718. DOI: 10.1088/0305-4470/24/13/002

Sadjang, P. N. (2018). On the Fundamental Theorem of (p,q)-Calculus and Some (p,q)-Taylor Formulas. Results in Mathematics. Vol. 73, No. 39, pp. 1-21. DOI: 10.1007/s00025-018-0783-z

Milovanovic, G. V., Gupta, V., and Malik, N. (2018). (p,q)-Beta Functions and Applications in Approximation. Boletín de la Sociedad Matemática Mexicana. Vol. 24, pp. 219-237. DOI: 10.1007/s40590-016-0139-1

Prabseang, J., Nonlaopon, K., Tariboon, J., and Ntouyas, S. K. (2021). Refinements of Hermite-Hadamard Inequalities for Continuous Convex Functions Via (p,q)-Calculus. Mathematics. Vol. 9, Issue 4, pp. 1-12. DOI: 10.3390/math9040446

Jain, A., Bhat, A. A., Jain, R., and Jain, D. K. (2021). Certain Results of (p,q)-Analogue of Aleph-Function with (p,q)-Derivative. Journal of Statistics Applications & Probability Letters. Vol. 10, Issue 1, pp. 45-52. DOI: 10.18576/jsap/100105

Ahmad, A., Jain, R., and Jain, D. K. (2017). Certain Results of (p,q)-Analogue of I-Function with (p,q)-Derivative. In Proceedings of the MSSCID-2017. 20th Annual Conference of VPI. pp. 31-44. India: Jaipur

Sadjang, P. N. (2017). On Two (p,q)-Analogues of the Laplace Transform. Journal of Difference Equations and Applications. Vol. 23, No. 9, pp. 1562-1583. DOI: 10.1080/10236198.2017.1340469

Sadjang, P. N. (2019). On (p,q)-Analogues of the Sumudu Transform. Access (20 January 2023). Available (10.13140/RG.2.2.34688.48645)

Jirakulchaiwong, S., Nonlaopon, K., Tariboon, J., Ntouyas S. K., and Kim, H. (2021). On (p,q)-Analogues of Laplace-Typed Integral Transforms and Applications. Symmetry. Vol. 13, Issue 4, pp. 1-22. DOI: 10.3390/sym13040631

Schiff, J. L. (1999). The Laplace Transform Theory and Application. Springer: New York

Yurekli, O. and Sadek, I. (1991). A Parseval-Goldstein Type Theorem on the Widder Potential Transform and Its Applications. International Journal of Mathematics and Mathematical Sciences. Vol. 14, No. 3, pp. 517-524. DOI: 10.1155/S0161171291000704

Sudland, N., Baumann, B., and Nonnenmacher, T. F. (1998). Open Problem: Who knows about the Aleph-function?. Fractional Calculus and Applied Analysis. Vol. 1, pp. 401-402

Saxena, V. P. (2008). The I-function; Anamaya publishers. New Delhi: India

Bhat, A. A., Singh, G., Jain, R., and Jain, D. K. (2019). q-Sumudu and q-Laplace Transforms of the Basic Analogue of Aleph-Function. Far East Journal of Mathematical Sciences. Vol. 118, No. 2, pp. 189-211. DOI: 10.17654/MS118020189

Tassaddiq, A., Bhat, A. A., Jain, D. K., and Ali, F. (2020). On (p,q)-Sumudu and (p,q)-Laplace Transforms of the Basic Analogue of Aleph-Function. Symmetry. Vol. 12,pp. 1-17

Mathai, A. M., Saxena, R. K., and Haubold, H. J. (2010). The H-Function: Theory and Applications. Springer: New York

Pathak, S. and Jain, R. (2017). Some Identities Involving (p,q)-Analogue of Meijer’s G-Function. Indian Academy Of Mathematics in Navlakha, Indore. Vol. 39, pp. 137-146