The Solutions of Diophantine Equation \frac{1^4}{v_1^4}+\frac{2^4}{v_2^4}+\frac{3^4}{v_3^4}+...+\frac{k^4}{v_k^4}=1

Main Article Content

Patchara Muangkarn
Jakkraphan Janthasopha
Cholatis Suanoom

Abstract

In this paper, we introduce solutions of the Diophantine equation on the following from: gif.latex?\frac{1^4}{v_1}+\frac{2^4}{v_2}+\frac{3^4}{v_3}+...+\frac{k^4}{v_k}=1
where gif.latex?v_i are positive integer such that gif.latex?2\leq&space;v_1<&space;v_2<v_3<&space;...<v_k and gif.latex?k=v_1. The results show that there will be only 1 solution when gif.latex?v_1=2, there will be only 3 solutions when gif.latex?v_1=3, and there will be at least 4 partial solutions when gif.latex?v_1\geq&space;4.

Article Details

How to Cite
[1]
P. Muangkarn, J. Janthasopha, and C. Suanoom, “The Solutions of Diophantine Equation \frac{1^4}{v_1^4}+\frac{2^4}{v_2^4}+\frac{3^4}{v_3^4}+...+\frac{k^4}{v_k^4}=1”, RMUTI Journal, vol. 17, no. 1, pp. 85–94, Apr. 2024.
Section
Research article

References

Thamkaew, P., Kameeh, P., Maneelek, P., and Wongmookham, S. (2019). Solutions of the Diophantine equation (1) frac{1}{x_1}+frac{3}{x^{_{2}}}+frac{5}{x_3}+...+frac{2k-1}{x_k}=1 and (2) . frac{2}{x_1}+frac{4}{x^{_{2}}}+frac{6}{x_3}+...+frac{2k}{x_k}=1 Sakthong: Journal of Science and Technology (STTT). Vol. 6, No. 1, pp. 1-10

Burshtein, N. (2017). On solution of the Diophantine equation, frac{1}{x_1}+frac{2}{x^{_{2}}}+frac{3}{x_3}+...+frac{k}{x_k}=1 are integers and k = x1 when 2leq {x_{1}}< {x_{2}}< {x_{3}}< ...

Thamkaew, P. and Thamkaew, J. (2022). Solutions of the Diophantine Equation frac{1^4}{v_1}+frac{2^4}{v_2}+frac{3^4}{v_3}+...+frac{k^4}{v_k}=1. Science and Technology Nakhon Sawan Rajabhat University Journal. Vol. 14, Issue 20, pp. 128-126