Optimal Value of Factors Affecting Surface Roughness and Workpiece Dimension on Acrylic Cutting with a CO2 Laser Cutter Machine Using the Taguchi Method

Main Article Content

Weerapol Taptimdee
Banpot Meesa
Prawach Chourwong

Abstract

This research investigates the factors that affect the surface roughness and dimension of acrylic workpieces cut with a CO2 laser machine. The Taguchi method is used to analyze the factors according to statistical principles, followed by an analysis of variance (ANOVA). The experimental factors are divided into three levels: speed (1, 1.5, and 2 mm/s), maximum power (70, 80, and 90 %), and minimum power (70, 80, and 90 %). The surface roughness of the specimen will be measured using a portable surface roughness machine, while the size of the specimen will be measured using an external micrometer with a precision of 0.001 mm, to determine the post-cutting error dimensional. The results show that the speed factor significantly affects the surface roughness and error dimension after cutting. Increasing the movement speed results in a decrease in surface roughness. The main factors that result in the least surface roughness are a speed of 1.0 mm/s, maximum power, and minimum power of 90 %. The main factors that result in the least error dimension after cutting are a speed of 2.0 mm/s, maximum power, and minimum power of 80 %.

Article Details

How to Cite
[1]
W. Taptimdee, B. Meesa, and P. Chourwong, “Optimal Value of Factors Affecting Surface Roughness and Workpiece Dimension on Acrylic Cutting with a CO2 Laser Cutter Machine Using the Taguchi Method”, RMUTI Journal, vol. 17, no. 2, pp. 1–16, Aug. 2024.
Section
Research article

References

Pawar, E. (2016). A Review Article on Acrylic PMMA. IOSR Journal of Mechanical and Civil Engineering. Vol. 13, Issue 2, pp. 1-4. DOI: 10.9790/1684-1302010104

Hwayyin, R. N. and Hammood, A. S. (2019). Improving the Properties of Acrylic by Creating Crack Using Laser Beam. In IOP Conference Series: Materials Science and Engineering. Vol. 579, DOI: 10.1088/1757-899X/579/1/012042

Mushtaq, R. T., Wang, Y., Rehman, M., Khan, A. M., and Mia, M. (2020). State-of-the-Art and Trends in CO2 Laser Cutting of Polymeric Materials-A Review. Materials. Vol. 13, Issue 17, pp. 1-23. DOI: 10.3390/ma13173839

Wangikar, S. S., Dixit, M. M., Wadekar, S. G., Nagtilak, H. R., Hingmire, N. D., and Shinde, D. P. (2021). Parametric Influence Study for Laser Cutting on Acrylic. In Proceedings of National Conference on Relevance of Engineering and Science for Environment and Society. pp. 104-107. DOI: 10.21467/proceedings.118.15

Moradi, M., Moghadam, M. K., Shamsborhan, M., Beiranvand, Z. M., Rasouli, A., Vahdati, M., Bakhtiari, A., and Bodaghi, M. (2021). Simulation, Statistical Modeling, and Optimization of CO2 Laser Cutting Process of Polycarbonate Sheets. Optik. Vol. 225, DOI: 10.1016/ j.ijleo.2020.164932

Palanisamy, C., Efzan, M. N. E., and Wen, C. C. (2023). Parametric and Heat Affected Zone Study on CO2 Laser Cutting of Acrylic. MethodsX. Vol. 10, DOI: 10.1016/j.mex.2023.102125

Varsi, A. and Gupta, A. (2022). Influence of Resolution on Surface Roughness During CO2 Laser Beam Machining. International Journal of Mechanical Engineering. Vol. 7, No. 1, pp. 4797-4805

Anbazhagan, G., Suseela, S. B., and Sankararajan, R. (2023). Design, Analysis and Fabrication of Solid Polymer Microneedle Patch Using CO2 Laser and Polymer Molding. Drug Delivery and Translational Research. Vol. 13, pp. 1813-1827. DOI: 10.1007/s13346-023-01296-w

Shehab, A. A., Naemah, I. M., Al-Bawee, A., and Al-Ezzi, A. (2020). Hole Characteristic of CO2 Laser Drilling of Poly-methyl Methacrylate PMMA. Journal of Mechanical Engineering Research and Developments. Vol. 43, No. 3, pp. 186-196

Pathak, A., Siddiqui, T. U., and Hussian, F. (2019). Investigation of Process Parameters of CO2 Laser Beam Machining on Acrylic. International Journal of Innovative Research in Science, Engineering and Technology. Vol. 8, Issue 5, pp. 4751-4757. DOI: 10.15680/IJIRSET.2019.0805159

Hanizam, H., Salleh, M. S., Omar, M. Z., and Sulong, A. B. (2019). Optimisation of Mechanical Stir Casting Parameters for Fabrication of Carbon Nanotubes-aluminium Alloy Composite Through Taguchi Method. Journal of Materials Research and Technology. Vol. 8, Issue 2, pp. 2223-2231. DOI: 10.1016/j.jmrt.2019.02.008.

Rao, R. V. (2011). Advanced Modeling and Optimization of Manufacturing Processes: International Research and Development. Springer Science & Business Media

Elsheikh, A. H., Deng, W., and Showaib, E. A. (2020). Improving Laser Cutting Quality of Polymethylmethacrylate Sheet: Experimental Investigation and Optimization. Journal of Materials Research and Technology. Vol. 9, Issue 2, pp. 1325-1339. DOI: 10.1016/j.jmrt.2019.11.059

Oktatian, E., Rosyidi, C. N., Pujiyanto, E., and Oktatian, E. M. (2021). Optimization of CNC CO2 Laser Cutting Process Parameters on Acrylic Cutting Using Taguchi Grey Relational Analysis and Response Surface Methodology. Research Square. DOI: 10.21203/rs.3.rs-1048691/v1

Kam, M., İpekçi, A., and Şengül, Ö. (2023). Investigation of the Effect of FDM Process Parameters on Mechanical Properties of 3D Printed PA12 Samples Using Taguchi Method. Journal of Thermoplastic Composite Materials. Vol. 36, Issue 1, pp. 307-325. DOI: 10.1177/08927057211006459

Hameed, A. Z., Aravind Raj, S., Kandasamy, J., Shahzad, M. A., and Baghdadi, M. A. (2022). 3D Printing Parameter Optimization Using Taguchi Approach to Examine Acrylonitrile Styrene Acrylate (ASA) Mechanical Properties. Polymers. Vol. 14, No. 16, pp. 1-15. DOI: 10.3390/polym14163256

Ninikas, K., Kechagias, J., and Salonitis, K. (2021). The Impact of Process Parameters on Surface Roughness and Dimensional Accuracy During CO2 Laser Cutting of PMMA Thin Sheets. Journal of Manufacturing and Material Processing. Vol. 5, Issue 3, DOI: 10.3390/jmmp5030074

Badoniya, P. (2018). CO2 Laser Cutting of Different Materials-A Review. International Journal of Engineering Research and Technology (IRJET). Vol. 5, Issue 6, pp. 2103-2115

Khan, M. M. A., Saha, S., Romoli, L., and Kibria, M. H. (2021). Optimization of Laser Engraving of Acrylic Plastics from the Perspective of Energy Consumption, CO2 Emission and Removal Rate. Journal of Manufacturing and Materials Processing. Vol. 5, Issue 3, DOI: 10.3390/jmmp5030078

Sharifi, M. and Akbari, M. (2019). Experimental Investigation of the Effect of Process Parameters on Cutting Region Temperature and Cutting Edge Quality in Laser Cutting of AL6061T6 Alloy. International Journal for Light and Electron Optics. Vol. 184, pp. 457-463. DOI: 10.1016/ j.ijleo.2019.04.105

Khoshaim, A. B., Elsheikh, A. H., Moustafa, E. B., Basha, M., and Showaib, E. A. (2021). Experimental Investigation on Laser Cutting of PMMA Sheets: Effects of Process Factors on Kerf Characteristics. Journal of Materials Research and Technology. Vol. 11, pp. 235-246. DOI: 10.1016/j.jmrt.2021.01.012