The Study of Damage Caused by Proton and Alpha Particles on the Surface of Alloys Used as Structures in Nuclear Reactors

Authors

  • Sunantasak Ravangvong Faculty of Science and Technology, Phetchaburi Rajabhat University
  • Punsak Glumglomchit Huahinvitthayalai School, Prachuapkhirikhan
  • Pattaranan Proprsserd Huahinvitthayalai School, Prachuapkhirikhan
  • Tatpicha Keawkrid Huahinvitthayalai School, Prachuapkhirikhan
  • Thanapon Thiantanakorn Huahinvitthayalai School, Prachuapkhirikhan
  • Chumphon Khobkham Faculty of Engineering, Thonburi University
  • Kittisak Sriwongsa Faculty of Education, Silpakorn University

Keywords:

Ion Distribution, Ion Ranges, Mass Stopping Power, Alloy

Abstract

The aim of this work is to study the damage from proton (H+) and alpha (He2+) particles interaction with TiVNbTa, TiVZrTa and TiVCrTa alloys using stopping of ion ranges in matter (SRIM) program version 2013. This program is based on the binary collision approximation
technique. The Ion distribution and Ion values ranging at 1 MeV while Mass stopping power parameters at energy ranging 1 - 1,000 MeV were analyzed. The results of ion distribution for H+ and He2+ particles with all alloys at 1 MeV of energy and penetration depth of 12 m
showed that H+ particles had more penetrating and damaging effect on the surface regions of the three alloys than He2+ particles and the ion ranges values corresponding to the ion distribution values. The mass stopping power for TiVZrTa alloy had the lowest value.
These results indicated that TiVZrTa alloy was excellent H+ and He2+ shielding.

Downloads

Download data is not yet available.

References

Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., and Chang, S. Y. (2004). Nanostructured High Entropy Alloys with Multiple Component Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials. Vol. 6, Issue 5, pp. 299-303. DOI: 10.1002/adem.200300567

Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., and Lu, Z. P. (2014). Microstructures and Properties of High-Entropy Alloys. Progress in Materials Science. Vol. 61, pp. 1-93. DOI: 10.1016/j.pmatsci.2013.10.001

Tsai, M. H. and Yeh, J. W. (2014). High-Entropy Alloys: A critical Review. Materials Research Letters. Vol. 2, Issue 3, pp. 107-123. DOI: 10.1080/21663831.2014.912690

Miracle, D. B., Miller, J. D., Senkov, O. N., Woodward, C., Uchic, M. D., and Tiley, J. (2014). Exploration and Development of High Entropy Alloys for Structural Applications. Entropy. Vol. 16, Issue 1, pp. 494-525. DOI: 10.3390/e16010494

Tang, Z., Huang, L., He, W., and Liaw, P.K. (2014). Alloying and Processing Effects on the Aqueous Corrosion Behavior of High Entropy Alloys. Entropy. Vol. 16, Issue 2, pp. 895-911. DOI: 10.3390/e16020895

Geantă, V., Voiculescu, I., Miloșan, I., Istrate, B., and Mateș, I. M. (2018). Chemical Composition Influence on Microhardness, Microstructure and Phase Morphology of AlxCrFeCoNi High Entropy Alloys. Revista de Chimie. Vol. 69, Issue 4, pp. 798-801.

DOI: 10.37358/RC.18.4.6203

Geantă, V., Voiculescu, I., Stefănoiu, R., Chereches, T., Zecheru, T., Matache, L., and Rotariu, A. (2018). Dynamic Impact Behaviour of High Entropy Alloys Used in the Military Domain. IOP Conference Series: Materials Science and Engineering.

Vol. 374, p. 012041. DOI: 10.1088/1757-899X/374/1/012041

Geantă, V., Voiculescu, I., Istrate, B., Vrânceanu, D. M., Ciocoiu, R., and Cotruț, C. M. (2018). The Influence of Chromium Content on the Structural and Mechanical Properties of AlCrxFeCoNi High Entropy Alloys. International Journal of Engineering Research in Africa. Vol. 37, pp. 23-28. DOI: 10.4028/www.scientific.net/jera.37.23

Voiculescu, I., Geanta, V., Vasile, I. M., Ştefănoiu, R., and Tonoiu, M. (2013). Characterisation of Weld Deposits Using as Filler Metal a High Entropy Alloy. Journal of Optoelectronics and Advanced Materials. Vol. 15, No. 7-8, pp. 650-654

Voiculescu, I., Geantă, V., Ştefănoiu, R., Patroi, D., and Binchiciu, H. (2013). Influence of the Chemical Composition on the Microstructure and Microhardness of AlCrFeCoNi High Entropy Alloy. Revista de Chimie. Vol. 64, Issue 12, pp. 1441-1444

Geantă, V., Cherecheș, T., Lixandru, P., Voiculescu, I., Ștefănoiu, R., Dragnea, D., Zecheru, T., and Matache, T. (2017). Virtual Testing of Composite Structures Made of High Entropy Alloys and Steel. Metals. Vol. 7, Issue 11, p. 496. DOI: 10.3390/met7110496

Csaki, I., Ştefǎnoiu, R., Geanta, V., Voiculescu, I., Sohaciu, M. G., Popescu, G., and Serghiuta, S. (2016). Researches Regarding the Processing Technique Impact on the Chemical Composition, Microstructure and Hardness of AlCrFeCoNi High Entropy

Alloy. Revista de Chimie. Vol. 67, No. 7, pp. 1373-1377

Fazakas, E., Varga, B., Geantă, V., Berecz, T., Jenei, P., Voiculescu, I., Coșniță, M., and Ștefănoiu, R. (2019). Microstructure, Thermal, and Corrosion Behavior of the AlAgCuNiSnTi Equiatomic Multicomponent Alloy. Materials. Vol. 12, Issue 6, p. 926.

DOI: 10.3390/ma12060926

Popescu1, G., Ghiban, B., Popescu, C. A., Rosu, L., Truscă, R., Carcea, I., Soare, V., Dumitrescu, D., Constantin, I., Olaru, M. T., and Carlan, B. A. (2018). New TiZrNbTaFe High Entropy Alloy Used for Medical Applications. IOP Conference Series: Materials

Science and Engineering. Vol. 400, Issue 2, p. 022049

Pickering, E. J., Carruthers, A. W., Barron, P. J., Middleburgh, S. C., Armstrong, D. E. J., and Gandy, A. S. (2012). High-Entropy Alloy for Advanced Nuclear Applications. Entropy. Vol. 23, Issue 1, p. 98. DOI: 10.3390/e23010098

Was, G. S. (2007). Fundamentals of Radiation Materials Science. 1st ed.; Springer: Berlin/Heidelberg, Germany

Zinkle, S. J. (2012). Radiation-Induced Effects on Microstructure. In Comprehensive Nuclear Materials. Vol. 1, pp. 65-98.

Kareer, A., Waite, J. C., Li, B., Couet, A., Armstrong, D. E. J., and Wilkinson, A. J. (2019). Short Communication: ‘Low Activation, Refractory, High Entropy Alloys for Nuclear Applications’. Journal of Nuclear Materials. Vol. 526, p. 151744. DOI: 10.1016/j.jnucmat.2019.151744

Ziegler, J. F., Ziegler, M. D., and Biersack, J. P. (2010). SRIM - The Stopping and Range of Ions in Matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. Vol. 268, Issue 11-12, pp. 1818-1823.

DOI: 10.1016/j.nimb.2010.02.091

Kamislioglu, M. (2021a). Research on the Effects of Bismuth Borate Glass System on Nuclear Radiation Shielding Parameters. Results in Physics. Vol. 22, p. 103844. DOI: 10.1016/j.rinp.2021.103844

Kamislioglu, M. (2021b). An Investigation Into Gamma Radiation Shielding Parameters of the (Al:Si) and (Al+Na):Si-doped International Simple Glasses (ISG) Used in Nuclear Waste Management, Deploying Phy-X/PSD and SRIM Software. Journal of Materials Science: Materials in Electronics. Vol. 32, pp. 12690-12704. DOI: 10.1007/s10854-021-05904-8

Dhal, S., Patro, A., Rath, P. K., Supraja, K., and Swain, M. (2020). Simulation of Very-low Energy Alkali Ion (≤ 10 KeV) Induced Effects on Al2O3 Micro Flakes. Indian Journal of Science and Technology. Vol. 13, Issue 21, pp. 2111-2118. DOI: 10.17485/IJST/v13i21.97

Nath, D. and Das, R. (2021). Surface and Displacement Damage Engineering on CdSe Nanocrystalline Thin Film by Swift Heavy Ag Ions: A Theoretical Investigation by SRIM/TRIM Package. Vacuum. Vol. 190, p. 110293. DOI: 10.1016/j.vacuum.2021.110293

Sriwongsa, K., Glumglomchit, P., Sualuang, B., Arunoros, P., Pansuay, M., Ravangvong, S., and Khobkham, C. (2022). Shielding of Uncharged and Charged Radiation of PbO-B2O3-SiO2-Na2O Glass System. Naresuan University Journal: Science and

Technology. Vol. 30, No. 1, pp. 109-119. DOI: 10.14456/nujst.2022.9

Published

2022-04-28

Issue

Section

บทความวิจัย (Research article)