Synthesis and Enhanced Power Factor of La and Ag Co-doped SrTiO3 Bulk Material

Main Article Content

Akkharadet Khumsri
Khatcharin Wetchakun
Kittichai Sopunna
Sert Kiennork
Ronariddh Nakhowong
Pakawat Wongwanwattana

Abstract

The purposes of this research were synthesis and enhanced power factor of Sr and Ag co-doped strontium titanate (Sr1-xLax/2Agx/2TiO3, x = 0, 0.01, and 0.10) synthesized by polymerized complex method following hot pressing. Temperature dependence of the electrical resistivity and the Seebeck coefficient was investigated in the temperature range from 385 - 775 K. The Sr0.99La0.005Ag0.005TiO3 exhibited lowest electrical resistivity and the Seebeck coefficient were 12.54 Ωm and -0.021 VK-1 at 775 K, respectively. Maximum power factor of 8.02 x 10-7 Wm-1K-2 was achieved for La and Ag-doped SrTiO3 at x = 0.01. Results exhibited that La and Ag co-doped SrTiO3 effectively reduced electrical resistivity and the enhanced power factor of the thermoelectric materials.

Article Details

How to Cite
[1]
A. Khumsri, K. Wetchakun, K. Sopunna, S. Kiennork, R. Nakhowong, and P. Wongwanwattana, “Synthesis and Enhanced Power Factor of La and Ag Co-doped SrTiO3 Bulk Material”, RMUTI Journal, vol. 14, no. 3, pp. 45–60, Oct. 2021.
Section
Research article

References

Okhay, O., Zlotnik, S., Xie, W., Orlinski, K., Gallo, M. J. H., Otero-Iruruta, G., Fernandes, A. J. S., Pawlak, D. A., Weidenkaff, A., and Tkach, A. (2019). Thermoelectric Performance of Nb-doped SrTiO3 Enhanced by Reduced Graphene Oxide and Sr Deficiency Cooperation. Carbon. Vol. 143, Issue 46, pp. 215-222

Lin, J- H., Chii-Shyang Hwang, C- S., and Sie, F-R. (2020). Preparation and Thermoelectric Properties of Nd and Dy co-doped SrTiO3 Bulk Materials. Materials Research Bulletin. Vol. 122, p. 110650. DOI: 10.1016/j.materresbull.2019.110650

Devi, N. Y., Vijayakumar, K., Rajasekaran, P., Alagar Nedunchezhian, A. S., Sidharth, D., Masaru, S., Arivanandhan, M., and Jayavel, R. (2021). Effect of Gd and Nb Co-Substitution on Enhancing the Thermoelectric Power Factor of Nanostructured SrTiO3. Ceramics International. Vol. 47, pp. 3201-3208. DOI: 10.1016/j.ceramint.2020.09.158

Muta, H., Kurosaki, K., and Yamanaka, S. (2005). Thermoelectric Properties of Reduced and La-doped Single-Crystalline SrTiO3. Journal of Alloys and Compounds. Vol. 392, Issue 1-2, pp. 306-309. DOI: 10.1016/j.jallcom.2004.09.005

Park, D., Ju, H., and Kim, J. (2019). One-Pot Fabrication of Ag-SrTiO3 Nanocomposite and Its Enhanced Thermoelectric Properties. Ceramics International. Vol. 45, Number 14, pp. 16969-16975. DOI: 10.1016/j.ceramint.2019.05.245

Srivastava, D., Norman, C., Azough, F., Marion C. Schäfer, M. C., Guilmeau, E., and Freer, R. (2018). Improving the Thermoelectric Properties of SrTiO3-Based Ceramics with Metallic Inclusions. Journal of Alloys and Compounds. Vol. 731, pp. 723-730. DOI: 10.1016/j.jallcom.2017.10.033

Ito, M. and Ohira, N. (2016). Effect of TiB2 Addition on Spark Plasma Sintering and Thermoelectric Performance of Y-doped SrTiO3 Synthesized by Polymerized Complex Process. Composites Part B: Engineering. Vol. 88, pp. 108-113. DOI: 10.1016/j.compositesb.2015.10.031

Lakhonchai, A., Chingsungnoen, A., and Poolcharuansin, P. (2019). Aluminum-Doped Zinc Oxide Thin Films Prepared by Reactive dc Magnetron Sputtering with Metal, Transition, and Oxide Modes. KKU Science Journal. Vol. 47, Issue 2, pp. 327-338

Thomas, R., Rao, A., Bhardwaj, R., Wang, L. Y., and Kuo, W. K. (2019). Reduction in Thermal Conductivity and Electrical Resistivity in Cu2SnSe3/Cu2Se Composite Thermoelectric System. Materials Research Bulletin. Vol. 120, p. 110607. DOI: 10.1016/j.materresbull.2019.110607

Zhao, L., Yang, J., Zou, Y., Hu, J., Liu, G., Shao, H., Zhang, X., Shi, Z., Hussain, S., and Qiao, G. (2021). Tuning Ag Content to Achieve High Thermoelectric Properties of Bi-doped p-type Cu3SbSe4-Based Materials. Journal of Alloys and Compounds. Vol. 872, p. 159659. DOI: 10.1016/j.jallcom.2021.159659

Nunocha, P., Kaewpanha, M., Bongkarn, T., Phuruangrat, A., and Suriwong, T. (2021). A New Route to Synthesizing La-doped SrTiO3 Nanoparticles Using the Sol-Gel Auto Combustion Method and Their Characterization and Photocatalytic Application. Materials Science in Semiconductor Processing. Vol. 134, p. 106001. DOI: 10.1016/j.mssp.2021.106001

Jiang, C., Fan, X., Feng, B., Hu, J., Xiang, Q., Li, G., Li, Y., and He, Z. (2017). Thermal Stability of p-type Polycrystalline Bi2Te3-Based Bulks for the Application on Thermoelectric Power Generation. Journal of Alloys and Compounds. Vol. 692, pp. 885-891. DOI: 10.1016/j.jallcom.2016.09.143

Abdi, M., Mahdikhah, V., and Sheibani, S. (2020). Visible Light Photocatalytic Performance of La-Fe co-doped SrTiO3 Perovskite Powder. Optical Materials. Vol. 102, p. 109803. DOI: 10.1016/j.optmat.2020.109803

Yasukawa, M., Ueda, K., Fujitsu, S., and Hosono, H. (2017). Thermoelectric Properties and Figure of Merit of Perovskite-Type Sr1-xLaxSnO3 Ceramics. Ceramic International. Vol. 43, Issue 13, pp. 9653-9657. DOI: 10.1016/j.ceramint.2017.04.136

Singh, S. P., Kanas, N., Desissa, T. D., Johnsson, M., Einarsrud, M- A., Norby, T., and Wiik, K. (2020). Thermoelectric Properties of A-site Deficient La-doped SrTiO3 at 100-900 °C Under Reducing Conditions. Journal of the European Ceramic Society. Vol. 40, Issue 2, pp. 401-407

Wu, C., Li, J., Fan, Y., Xing, J., Gu, H., Zhou, Z., Lu, X., Zhang, Q., Wang, L., and Jiang, W. (2019). The Effect of Reduced Graphene Oxide on Microstructure and Thermoelectric Properties of Nb-doped A-Site-Deficient SrTiO3 Ceramics. Journal of Alloys and Compounds. Vol. 786, pp. 884-893. DOI: 10.1016/j.jallcom.2019.01.376

Ito, M. and Matsuda, T. (2009). Thermoelectric Properties of Non-doped and Y-doped SrTiO3 Polycrystals Synthesized by Polymerized Complex Process and Hot Pressing. Journal of Alloys and Compounds. Vol. 477, Issue 1-2, pp. 473-477. DOI: 10.1016/j.jallcom.2008.10.031