Factors Affecting Anaerobic Digestion Efficiency to Produce Biogas
Main Article Content
Abstract
Under the energy crisis, searching for the source of renewable energy plays an important role nowadays. Especially, biogas as the renewable energy generated from the anaerobic digestion process of various biomass and organic wastes. Due to biogas is clean renewable energy and environmentally friendly, it can be used beneficially in many ways such as heating, transportation, lighting, and electrical production. Thus, to obtain a qualified biogas from an efficient anaerobic digestion process, this paper is interested in reviewing several factors such as pH, carbon to nitrogen ratio, organic loading rate, retention time, moisture, total solids, nutrient, mixing, and volatile fatty acids to alkalinity ratio, etc. These factors are the vital factors influencing the biogas production efficiency. Moreover, it can be used as the basic guideline for considering the anaerobic digestion application to produce further biogas as a renewable energy.
Article Details
References
Rapephat, S. (2017). Review-Renewable Energy for National Security. NDC Security. Thailand National Defence College. Vol. 4, pp. 1-12
Ministry of energy. (2017). Annual report 2017. Bangkok: Office of the Permanent Secretary.
Buadit, T., Aroonsrimorakot, S., Bhaktikul, K., and Thavipoke, P. (2013). Biogas Production and Greenhouse Gases Reduction from Wastewater at Mahidol University, Salaya Campus, Thailand. APCBEE Procedia. Vol. 5, pp.169-174. DOI: 10.1016/j.apcbee.2013.05.030
Saeed, E., Ramin, K., and Masih, S. (2011). Greenhouse Gas Emissions Reduction through a Biogas Plant: A Case Study of Waste Management Systems at FEKA Dairy Farm. In 2nd International Conference on Environmental Science and Technology IPCBEE. IACSIT Press, Singapore. Vol. 6, pp. 445-448
Mohajan, H. K. (2012). Dangerous Effects of Methane Gas in Atmosphere. International Journal of Economic and Political Integration. Vol. 1, No. 2, pp. 3-10
Dragicevic, I., Sogn, T. A., and Eich-Greatorex, S. (2018). Recycling of Biogas Digestates in Crop Production Soil and Plant Trace Metal Content and Variability. Frontiers in Sustainable Food Systems. Vol. 2, pp. 1-14. DOI: 10.3389/fsufs.2018.00045
Sogn, T. A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V. G. H., and Eich-Greatorex, S. (2018). Recycling of Biogas Digestates in Plant Production: NPK Fertilizer Value and Risk of Leaching. International Journal of Recycling of Organic Waste in Agriculture.Vol. 7, No. 1, pp. 49-58. DOI: 10.1007/S40093-017-0188-0
Ahmmad, R. M. and Haque, S. (2014). Providing Electricity by Digester Types on Biogas Productions from Municipal Solid Waste in Dhaka City, Bangladesh. International Journal of Energy, Information and Communications. Vol. 5, Issue 3, pp. 13-22. DOI: 10.14257/ijeic.2014.5.3.02
Jorgensen, P. J. (2009). Biogas-Green Energy. 2nd Faculty of Agricultural Sciences, Aarhus University: Digisource Danmark A/S
Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., and Iyyappan, J. (2018). Biogas Production-A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion. Renewable and Sustainable Energy Reviews. Vol. 90, No. C, pp. 570-582. DOI: 10.1016/j.rser.2018.03.093
Merlin, C. P., Gopinath, L. R., and Divya, D. (2014). A Review on Anaerobic Decomposition and Enhancement of Biogas Production through Enzymes and Microorganisms. Renewable and Sustainable Energy Reviews. Vol. 34, pp. 167-173. DOI: 10.1016/j.rser.2014.03.010
Wenche, H. B., Carlos, D., and Rune, B. (2015). Temperature Effects in Anaerobic Digestion Modeling. In Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56). October, 7-9, 2015, Linköping University, Sweden. pp. 261-269. DOI: 10.3384/ecp15119261
Sithara, M. S. and Kiran, J. (2018). Review on Factors Affecting Biogas Production. International Journal for Technological Research in Engineering. Vol. 5, Issue 9, pp. 3693-3697
Aderonke, K. A., Wasiu, A. A., and Moses, O. O. (2017). Microbial Dynamics and Biogas Production During Single and Co-Digestion of Cow Dung and Rice Husk. Applied Environmental Research. Vol. 39, No. 2, pp. 67-76. DOI: 10.35762/AER.2017.39.2.6
Ali, S. F., Mahmood, Q., Maroof, S. M., Pervez, A., and Asad, A.S. (2014). Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. Scientific World Journal. Vol. 2014, pp. 1-21. DOI: 10.1155/2014/183752
Neeti, L., Preeti, L., Amir, A. S., Rakshanda, B., Rouf, R. D., and Pooja, D. (2017). Methanogenesis: Are Ruminants only Responsible: A Review. Journal of Pharmacognosy and Phytochemistry. Vol. 6, No. 6, pp. 2347-2352
Sikora, A., Detman, A., Chojnacka, A., and Blaszczyk, M. K. (2017). Anaerobic Digestion: I. A Common Process Ensuring Energy Flow and the Circulation of Matter in Ecosystems. II. A Tool for the Production of Gaseous Biofuels. Fermentation Processes. DOI: 10.5772/64645
Rameshprabu, R. and Yuwalee, U. (2016). Effect of Temperature on the Performance of Biogas Production from Duckweed. Chemistry Research Journal. Vol. 1, No. 1, pp. 58-66
Lokendra, S., Alam, S. I., and Ramana, K. V. (1999). Effect of Fluctuating Temperature Regime on Psychrophilic Anaerobic Digestion of Night Soil. Defence Science Journal. Vol. 49, No. 2, pp. 135-140. DOI: 10.14429/dsj.49.3798
Kim, M., Gomec, C. Y., Ahn, Y., and Speece, R. E. (2003). Hydrolysis and Acidogenesis of Particulate Organic Material in Mesophilic and Thermophilic Anaerobic Digestion. Environ Technol. Vol. 24, Issue 9, pp. 1183-1190. DOI: 10.1080/09593330309385659
Salihu, A. and Alam, M. Z. (2016). Pretreatment Methods of Organic Wastes for Biogas Production. Journal of Applied Sciences. Vol. 16, Issue 3, pp. 124-137. DOI: 10.3923/jas.2016.124.137
Zhang, T., Tan, Y., and Zhang, X. (2016). Using a Hybrid Heating System to Increase the Biogas Production of Household Digesters in Cold Areas of China: An Experimental Study. Applied Thermal Engineering. Vol. 103, pp. 1299-1311. DOI:10.1016/J.APPLTHERMALENG.2016.05.027
Ozcan, K. (2018). Bioenergy and Biofuels. Taylor & Francis Group
Herbert, H. P. F. and Hong, L. (2002). Effect of pH on Hydrogen Production from Glucose by Mixed Culture. Bioresource Technology. Vol. 82, Issue 1, pp. 87-93. DOI: 10.1016/s0960-8524(01)00110-9
Appels, L., Baeyens, J., Degrève, J., and Dewil, R. (2008). Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Progress in Energy and Combustion Science. Vol. 34, Issue 6, pp 755-781. DOI: 10.1016/j.pecs.2008.06.002
Rajeshwari, K. V., Balakrishnan, M., Kansal, A., Kusum, L., and Kishore, V. V. N. (2000). State-of-the-art of Anaerobic Digestion Technology for Industrial Wastewater Treatment. Renewable and Sustainable Energy Reviews. Vol. 4, No. 2, pp. 135-156. DOI: 10.1016/S1364-0321(99)00014-3
Gary, N. F. (2004). Biology of Wastewater Treatment. Imperial College Press
Holm-Nielsen, J. B., Lomborg, C. J., Oleskowicz-opiel, P., and Esbensen, K. H. (2008). On-line Near Infrared Monitoring of Glycerol-Boosted Anaerobic Digestion Processes: Evaluation of Process Analytical Technologies. Biotechnology Bioengineering. Vol. 99, Issue 2, pp. 302-313.
DOI: 10.1002/bit.21571
Wang, Y., Zhang, Y., Wang, J., and Meng, L. (2009). Effects of Volatile Fatty Acid Concentrations on Methane Yield and Methanogenic Bacteria. Biomass and Bioenergy. Vol. 33, No. 5, pp. 848-853. DOI: 10.1016/j.biombioe.2009.01.002
Liu, X., Li, R., and Ji, M. (2019). Effects of Two-Stage Operation on Stability and Efficiency in Co-Digestion of Food Waste and Waste Activated Sludge. Energies. Vol. 12, Issue 14, pp. 1-21. DOI: 10.3390/en12142748
Kebreab, E., Dijkstra, J., Bannink, A., and France, J. (2009). Recent Advances in Modeling Nutrient Utilization in Ruminants. Journal of Animal Science. Vol. 87, Issue Supple 1414, pp. 111-122. DOI: 10.2527/jas.2008-1313
Dioha, I. J., Ikeme, C. H., Nafi ’u, T., Soba, N. I., and Yusuf, M. B. S. (2013). Effect of Carbon to Nitrogen Ratio on Biogas Production. International Research Journal of Natural Sciences. Vol. 1, No. 3, pp. 1-10.
Kigozi, R., Aboyade, A., and Muzenda, E. (2014). Biogas Production Using the Organic Fraction of Municipal Solid Waste as Feedstock. International Journal of Advances in Mechanical & Automobile Engineering. Vol. 1, No. 1, pp. 107-114
Dieter, D. and Angelika, S. (2008). Biogas from Waste and Renewable Resources. Germany: John Wiley & Sons
Siddiqui, Z., Horan, N. J., and Anaman, K. (2011). Optimisation of C:N Ratio for Co-Digested Processed Industrial Food Waste and Sewage Sludge Using the BMP Test. International Journal of Chemical Reactor Engineering. Vol. 9, Issue 1, pp. 1-12. DOI: 10.1515/1542-6580.2327
Mel, M., Mohd, S. N., Avicenna, Ihsan, S. I., Ismail, A. F., and Yaacob, S. (2015). Effect of Organic Loading Rate (OLR) of Slurry on Biogas Production Quality. Advanced Materials Research. Vol. 1115, pp. 325-330. DOI: 10.4028/www.scientific.net/AMR.1115.325
Mahanta, P., Saha, U. K., Dewan, A., Kalita, P., and Buragohain, B. (2005). Biogas Digester: A Discussion on Factors Affecting Biogas Production and Field Investigation of a Novel Duplex Digester. Journal of the Solar Energy Society of India. Vol. 15, No. 2, pp. 1-12
Rincón, B., Borja, R., González, J. M., Portillo, M. C., and Sáiz-Jiménez, C. (2008). Influence of Organic Loading Rate and Hydraulic Retention time on the Performance, Stability and Microbial Communities of One-Stage Anaerobic Digestion of Two-Phase Olive Mill Solid
Residue. Biochemical Engineering Journal. Vol. 40, Issue 2, pp. 253-261. DOI: 10.1016/j.bej.2007.12.019
He, J., Wang, X., Yin, X. B., Li, Q., Li, X., Zhang, Y. F., and Deng, Y. (2018). Insights Into Biomethane Production and Microbial Community Succession During Semi-Continuous Anaerobic Digestion of Waste Cooking oil Under Different Organic Loading Rates. AMB Express. Vol. 8, No. 1, pp. 1-12. DOI: 10.1186/s13568-018-0623-2
Franke-Whittle, I. H., Walter, A., Ebner, C., and Insam, H. (2014). Investigation Into the Effect of High Concentrations of Volatile Fatty Acids in Anaerobic Digestion on Methanogenic Communities. Waste Management. Vol. 34, Issue 11, pp. 2080-2089. DOI: 10.1016/j.wasman.2014.07.020
Mogens, H., Mark, V. L., George, E., and Damir B. (2008). Biological Wastewater Treatment: Principles, Modeling and Design. IWA Publishing
Masila, N., Salmi, N. A. S., Omar, S. J. E., Mohd, Z. S., and Ku, H. K. H. (2017). Factors Affecting Production of Biogas from Organic solid Waste via Anaerobic Digestion Process: A Review. Journal of Solid State Science & Technology. Vol. 25, No. 1, pp. 29-39
Meegoda, J. N., Li, B., Patel, K., and Wang, L. B. (2018). A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. International Journal of Environmental Research and Public Health. Vol. 15, No. 10, pp. 1-16. DOI: 10.3390/ijerph15102224
Chen, C., Guo, W., Ngo, H. H., Lee, D. J., Tung, K. L, Jin, P., Wangd, J., and Wud, Y. (2016). Challenges in Biogas Production from Anaerobic Membrane Bioreactors. Renewable Energy. Vol. 98, pp. 120-134
Boonyakitsombut, S., Kim, M. I., Ahn, Y. H., and Speece, R. E. (2002). Degradation of Propionate and its Precursors: The Role of Nutrient Supplementation. KSCE Journal of Civil Engineering. Vol. 6, Issue 4, pp. 379-387. DOI: 10.1007/BF02841992
Kozłowski, K., Mazurkiewicz, J., Chełkowski, D., Jeżowska, A., Cieślik, M., Brzoski, M., Smurzyńska1, A., Dongmin, Y., and Wei, Q. (2018). The Effect of Mixing During Laboratory Fermentation of Maize Straw with Thermofilic Technology. Journal of Ecological Engineering. Vol, 19, No. 5, pp. 93-98. DOI: 10.12911/22998993/91270
Lili, M., Biro, G., Sulyok, E., Petis, M., Borbely, J., and Tamas, J. (2011). Novel Approach on the Basis of FOS/TAC Method. In Proceeding International Symposia Risk Factors for Environment and Food Safety & Natural Resources and Sustainable Development & 50 Years of Agriculture Researche in Oradea; University of Oradea, Oradea: Faculty of Environmental Protection. pp. 802-807