A Compact Tri-Band Antenna for Wireless Communications

Main Article Content

Suthasinee Lamultree
Supada Srisukhot
Kraisoon Sukphengphanao
Chaetsada Kulawong

Abstract

This paper proposes a tri-band rectangular monopole antenna surrounded by rectangular ring with symmetrical perturbation inverted L-shape strips for wireless communications. The antenna structure is simple, compact and lightweight. It is printed on FR4 substrate of dimensions of 50 × 50 mm. with the relative permittivity of 4.3, high of 1.6 mm and fed by coplanar waveguide with 50-ohm impedance. This presented antenna consists of a monopole rectangular radiating patch, a pair of inverted L-shape strip for improving the impedance matching, and a rectangular ring to control its radiation to be bidirectional pattern. In the processes, an electromagnetic microwave simulation tool is employed to investigate optimum parameters. It is found that both simulated and measured results are in good agreement. This antenna provides S11 < -10 dB covered 1.50 - 2.22, 2.77 - 3.81, and 4.45 - 6.37 GHz with maximum gains of 1.52, 3.44, and 2.72 dBi, respectively.

Article Details

How to Cite
[1]
S. . Lamultree, S. . Srisukhot, K. . Sukphengphanao, and C. . Kulawong, “A Compact Tri-Band Antenna for Wireless Communications”, RMUTI Journal, vol. 13, no. 2, pp. 72–85, Mar. 2020.
Section
บทความวิจัย (Research article)

References

Garg, R., Bhartia, P., Bahl, I. J., and Ittipiboon, A. (2001). Microstrip Antenna Design Handbook. London: Artech House Inc.

Chen, Z. N., Qing, X., See, T. S. P., and Toh, W. K. (2012). Antennas for WiFi Connectivity. Proceedings of the IEEE. Vol. 100, Issue 7, pp. 2322-2329. DOI: 10.1109/JPROC.2012.2183830

Jothi Chitra, R. and Nagarajan, V. (2013). Double L-Slot Microstrip Patch Antenna Array for WiMAX and WLAN Applications. Computers & Electrical Engineering. Vol. 39, Issue 3, pp. 1026-1041. DOI: 10.1016/j.compeleceng.2012.11.024

Hoang, T. V. and Park, H. C. (2014). Very Simple 2.45/3.5/5.8 GHz Triple-Band Circularly Polarized Printed Monopole Antenna with Bandwidth Enhancement. Electronics Letters. Vol. 50, Issue 24, pp. 1792-1793. DOI: 10.1049/el.2014.2935

Chakraborty, U., Kundu, A., Chowdhury, S. K., and Bhattacharjee, A. K. (2014). Compact Dual-Band Microstrip Antenna for IEEE 802.11a WLAN Application. IEEE Antennas and Wireless Propagation Letters. Vol. 13, pp. 407-410

Wu, T. L., Pan, Y. M., Hu, P. F., and Zheng, S. Y. (2017). Design of a Low Profile and Compact Omnidirectional Filtering Patch Antenna. IEEE Access. Vol. 5, pp. 1083-1089. DOI: 10.1109/ACCESS.2017.2651143

Ban, Y. L., Li, C., Sim, C. Y. D., Wu, G., and Wong, K. L. (2016). 4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications. IEEE Access. Vol. 4, pp. 2981-2988. DOI: 10.1109/ACCESS.2016.2582786

Hu, W., Yin, Y. Z., Fei, P., and Yang, X. (2011). Compact Triband Square-Slot Antenna with Symmetrical L-Strips for WLAN/WiMAX Applications. IEEE Antennas and Wireless Propagation Letters. Vol. 10, pp. 462-465. DOI:10.1109/LAWP.2011.2154372

Osklang, P., Phongcharoenpanich, C., and Akkaraekthalin, P. (2019). Triband Compact Printed Antenna for 2.4/3.5/5 GHz WLAN/WiMAX Applications. International Journal of Antennas and Propagation. Vol. 2019, p. 13. DOI: 10.1155/2019/8094908

Ta, X. S., Choo, H., and Park, I. (2017). Broadband Printed-Dipole Antenna and Its Arrays for 5G Applications. IEEE Antennas and Wireless Propagation Letters. Vol. 16, pp. 2183-2186. DOI: 10.1109/LAWP.2017.2703850

Li, Y., Zhao, Z., Tang, Z., and Yin, Y. (2020). Differentially Fed, Dual-Band Dual-Polarized Filtering Antenna with High Selectivity for 5G Sub-6 GHz Base Station Applications. IEEE Transactions on Antennas and Propagation. Vol. 68, Issue 4, pp. 3231-3236. DOI: 10.1109/TAP.2019.2957720

Changand, T. N. and Jiang, J. H. (2009). Meandered T-Shaped Monopole Antenna. IEEE Transactions on Antennas and Propagation. Vol. 57, Issue 12, pp. 3976-3978. DOI: 10.1109/TAP.2009.2026713

Nguyen, V., Park, B., Park, S., and Yoon, G. (20014). A Planar Dipole for Multiband Antenna Systems with Self-Balanced Impedance. IEEE Antennas and Wireless Propagation Letters. Vol. 13, pp. 1632-1635. DOI: 10.1109/LAWP.2014.2347952

Huang, H., Liu, Y., Zhang, S., and Gong, S. (2015). Multiband Metamaterial-Loaded Monopole Antenna for WLAN/WiMAX Applications. IEEE Antennas and Wireless Propagation Letters. Vol. 14, pp. 662-665. DOI: 10.1109/LAWP.2014.2376969

He, M., Ye, X., Zhou, P., Zhao, G., Zhang, C., and Sun, H. (2015). A Small-Size Dual-Feed Broadband Circularly Polarized U-Slot Patch Antenna. IEEE Antennas and Wireless Propagation Letters. Vol. 14, pp. 898-901. DOI: 10.1109/LAWP.2014.2384496

Yang, Y., Chu, Q., and Mao, C. (2016). Multiband MIMO Antenna for GSM, DCS, and LTE Indoor Applications. IEEE Antennas and Wireless Propagation Letters. Vol. 15, pp. 1573-1576. DOI: 10.1109/LAWP.2016.2517188

Lamultree, S. and Jansri, C. (2019). A Compact Unidirectional Pattern Antenna for Wireless Communications. RMUTI Journal Science and Technology. Vol. 12, No. 2, pp. 14-28

Balanis, C. A. (2007). Antenna Theory, Analysis and Design. New York: John Wiley & Sons

Lamultree, S. and Phongcharoenpanich, C. (2008). Bidirectional Ultra-Wideband Antenna Using Rectangular Ring Fed by Stepped Monopole. Progress in Electromagnetics Research PIER. Vol. 85, pp. 227-242. DOI: 10.2528/PIER08080103