A Compact Unidirectional Pattern Antenna for Wireless Communications

Main Article Content

สุธาสินี ละมุลตรี
ชาลี จันศรี

Abstract

This paper presents a unidirectional pattern antenna implemented by rectangular microstrip patch for wireless local area network. This rectangular patch is firstly designed to provide a dominant mode propagation at 2.45 GHz. Then, parametric studies are investigated to achieve appropriate parameters. It is found that this antenna provides a unidirectional pattern with maximum gain of 2.7 dBi together with magnitude of S11 better than -10 dB covered the WLAN frequency from 2.4 to 2.48 GHz. In addition, both simulated and measured results are in good agreement.

Article Details

How to Cite
[1]
ละมุลตรี ส. and จันศรี ช., “A Compact Unidirectional Pattern Antenna for Wireless Communications”, RMUTI Journal, vol. 12, no. 2, pp. 14–28, Aug. 2019.
Section
บทความวิจัย (Research article)

References

[1] Chen, Z. N., Qing, X., See, T. S. P., and Toh, W. K. (2012). Antennas for WiFi Connectivity. Proceedings of the IEEE. Vol. 100, Issue 7, pp. 2322-2329. DOI: DOI: 10.1109/JPROC.2012.2183830

[2] Garg, R., Bhartia, P., Bahl, I. J., and Ittipiboon, A. (2001). Microstrip Antenna Design Handbook. 1st Edition, Artech House, Norwood.

[3] Balanis, C. A. (2007). Antenna Theory: Analysis and Design, 4th Edition. New York: John Wiley & Sons.

[4] Jothi Chitra, R. and Nagarajan, V. (2013). Double L-slot Microstrip Patch Antenna Array for WiMAX and WLAN Applications. Computers and Electrical Engineering. Vol. 39, Issue 3,
pp. 1026-1041. DOI: 10.1016/j.compeleceng.2012.11.024

[5] Hoang, T. V. and Park, H. C. (2014). Very Simple 2.45/3.5/5.8 GHz Triple-Band Circularly Polarised Printed Monopole Antenna with Bandwidth Enhancement. Electronics Letters.
Vol. 50, Issue 24, pp. 1792-1793. DOI: 10.1049/el.2014.2935

[6] Chakraborty, U., Kundu, A., Chowdhury, S. K. and Bhattacharjee, A. K. (2014). Compact Dual-Band Microstrip Antenna for IEEE 802.11a WLAN Application. IEEE Antennas and
Wireless Propagation Letters. Vol. 13, pp. 407-410. DOI: 10.1109/LAWP.2014.2307005

[7] Munir, A., Petrus, G., and Nusantara, H. (2013). Multiple Slots Technique for Bandwidth Enhancement of Microstrip Rectangular Patch Antenna. In 2013 International Conference
on QiR (Quality in Research), At Yogyakarta, Indonesia. pp. 150-154. DOI: 10.1109/QiR.2013.6632555

[8] Hsiao, C., Huang, H., and Hwang, R. (2014). An Impedance Matching Technique for Bandwidth Enhancement of Terminal Antennas. IEEE International Workshop on Electromagnetics. pp.113-114

[9] Nesbitt, P. B., Tsang, H., Ketterl, T. P., Church, K., and Weller, T. M. (2016). 4 GHz 3D-printed Balun-Fed Bowtie Antenna with Finite Ground Plane for Gain and Impedance Matching Enhancement. In 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON). pp. 1-3. DOI: 10.1109/WAMICON.2016.7483854

[10] Xu, K. D., Xu, H., Liu, Y., Li, J., and Liu, Q. H. (2018). Microstrip Patch Antennas with Multiple Parasitic Patches and Shorting Vias for Bandwidth Enhancement. IEEE Access. Vol. 6,
pp. 11624-11633. DOI: 10.1109/ACCESS.2018.2794962

[11] Elumalai, L. G. N., Kanagasabai, M., and Balasubramanian, B. (2013). Implementation of Slotted Meander-Line Resonators for Isolation Enhancement in Microstrip Patch Antenna
Arrays. IEEE Antennas and Wireless Propagation Letters 2013. Vol. 12, pp. 15-18. DOI: 10.1109/LAWP.2012.2237156

[12] Wang, H., Liu, S., Chen, L., Li, W., and Shi, X. (2014). Gain Enhancement for Broadband Vertical Planar Printed Antenna with H-Shaped Resonator Structures. IEEE Transactions on Antennas and Propagation. Vol. 62, Issue 8, pp. 4411-4415. DOI: 10.1109/TAP.2014.2325955

[13] Sun, C., Zheng, H., Zhang, L., and Liu, Y. (2014). Analysis and Design of a Novel Coupled Shorting Strip for Compact Patch Antenna with Bandwidth Enhancement. IEEE Antennas
and Wireless Propagation Letters. Vol. 13, pp. 1477-1481. DOI: 10.1109/LAWP.2014.2341596

[14] He, M., Ye, X., Zhou, P., Zhao, G., Zhang, C., and Sun, H. (2015). A Small-Size Dual-Feed Broadband Circularly Polarized U-Slot Patch Antenna. IEEE Antennas and Wireless
Propagation Letters. Vol. 14, pp. 898-901. DOI: 10.1109/LAWP.2014.2384496

[15] Wu, T. L., Pan, Y. M., Hu, P. F. and Zheng, S. Y. (2017). Design of a Low Profile and Compact Omnidirectional Filtering Patch Antenna. IEEE Access. Vol. 5, pp. 1083-1089. DOI: 10.1109/ACCESS.2017.2651143

[16] Jansri, C., Phongcharoenpanich, C., and Lamultree, S. (2018). Double-Fed Rectangular Microstrip Patch Antenna for WLAN Applications. Proceedings of the 2018 International
Electrical Engineering Congress. Krabi, Thailand, 7-9 March 2018, pp. 104-107