Effect of Urea Treated Rice Straw in Combination with Fermented Ground Samanea Saman Pods on Quality of Rice Straw and a Reduction of Afl atoxin B1 (AFB1) Level Using In vitro Gas Production Technique

Main Article Content

อรอนงค์ พวงชมภู
จุฬาสินี แมนสถิต
มิ่งขวัญ อุ่นสำโรง
สุรีรัตน์ ศรีริโม้
ชัยณรงค์ ขาวทอง
พิลาสลักษณ์ ปานประเสริฐ

Abstract

This experiment aims to determine the effect of enhancement quality of rice straw contaminated with afl atoxin B1 (AFB1) by treated with urea and ground Samanea saman pods fermented (GSSF) on rumen degradability using in vitro gas technique. The results showed that when fermented ground Samanea saman pods with lactic acid bacteria from yogurt drink, 0, 3, 5, 7 and 14 days, the number of total bacteria by microscopic count increased over the period of fermentation (P < 0.05). The dry matter content as in the range 48 - 49 % (P > 0.05) and protein were increased by the number of days fermentation (P < 0.05). The amount of aflatoxin (ppb) after fermented rice straw with 5 % GSSF only was decreased with the number of days of fermentation (P < 0.05). The crude protein content in rice straw fermented with
2.5 % urea and 2.5 % GSSF of 5 and 7 days of fermentation were higher than 5 % GSSF (P < 0.05). The rumen degradability in beef cattle using in vitro gas technique of rice straw fermented with 2.5 % urea and 2.5 % GSSF were higher than fermented with 5 % GSSF (P < 0.05). The amount of afl atoxin (ppb) in rumen fluid after incubation at 0, 5, 16 and 24 h decreased with increasing incubation time (P < 0.05) and variability reduction of Aflatoxin in treatment when the incubation time increases.

Article Details

How to Cite
[1]
พวงชมภู อ., แมนสถิต จ., อุ่นสำโรง ม., ศรีริโม้ ส., ขาวทอง ช., and ปานประเสริฐ พ., “Effect of Urea Treated Rice Straw in Combination with Fermented Ground Samanea Saman Pods on Quality of Rice Straw and a Reduction of Afl atoxin B1 (AFB1) Level Using In vitro Gas Production Technique”, RMUTI Journal, vol. 12, no. 1, pp. 97–110, Apr. 2019.
Section
บทความวิจัย (Research article)

References

[1] Wanapat, M. (2533). Ruminant Nutrition. Funny Publication. Bangkok. (in Thai).

[2] Paengkoum, P. (2551). Improved Rice Straw Fermented with Urea Note. Department of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology. Nakhon Ratchasima. (in Thai)

[3] Wanapat, M., Kang, S., and Polyorach, S. (2013). Development of Feeding Systems and Strategies of Supplementation to Enhance Rumen Fermentation and Ruminant Production in the Tropics. Journal of Animal Science and Biotechnology. Vol. 4, Issue 1, p. 11. DOI: 10.1186/2049-1891-4-32

[4] Fink-Gremmels, J. (2008). Mycotoxins in Cattle Feeds and Carry-Over to Dairy Milk: A Review. Food Additives and Contaminants: Part A. Vol. 25, Issue 2, pp. 172-180. DOI: 10.1080/02652030701823142

[5] Wu, F. (2006). Mycotoxin Reduction in Bt Corn: Potential Economic, Health, and Regulatory Impacts. Transgenic Research. Vol. 15, Issue 3, pp. 277-289. DOI: 10.1007/s11248-005-5237-1

[6] Upadhaya, S. D., Sung, H. G., Lee, C. H., Lee, S. Y., Kim, S. W., Cho, K. J., and Ha, K. J. (2009). Comparative Study on the Aflatoxin B1 Degradation Ability of Rumen Fluid from Holstein Steers and Korean Native Goats. Journal Veterinary Science. Vol. 10, Issue 1, pp. 29-34. DOI: 10.4142/jvs.2009.10.1.29

[7] Westlake, K., Mackie, R. I., and Dutton, M. F. (1989). In vitro Metabolism of Mycotoxins by Bacterial, Protozoal and Ovine Ruminal Fluid Preparations. Animal Feed Science and Technology. Vol. 25, Issues 1-2, pp. 169-178. DOI: 10.1016/0377-8401(89)90117-X

[8] Patterson, D. S. P., Glancy, E. M., and Robert, B. A. (1980). The ‘carry-over’ of Aflatoxin Cows Ded Rations Containing a Low Concentration of Aflatoxin B1. Food and Cosmetic Toxicology. Vol. 18, Issue 1, pp. 35-37. DOI: 10.1016/0015-6264(80)90008-5

[9] Talkhan, O. F. A., Rady, F. M., and Mohamed, E. F. (2016). Detection of aflatoxins, ochratoxins and some chemical adulterants in raw Milk. Benha Veterinary Medical Journal. Vol. 31, No. 2, pp. 283-288

[10] Schuster, R., Marx, G., and Rothaupt, M. (1993). Analysis of Mycotoxins by HPLC with Automated Confirmation by Spectral Library. (Application Note 12-5091-8692).

[11] Sinprasobchai, L., Saijit, P., and Sookthinthai, L. (2006). Correlation of aflatoxin in concentrated feed and detection of the toxin in dairy milk. Thai-NIAH eJournal. V1 N2, (September - December 2006) (niah.dld.go.th/th/fi les/ejournal/v01n2t09.pdf)

[12] Diekman, M. A. and Green, M. L. (1992). Mycotoxins and Reproduction in Domestic Livestock. Journal of Animal Science. Vol. 70, pp. 1615-1627

[13] George, W. S. and Craig, R. E. (2006). Samanea saman (rain tree). Species Profiles for Pacific Island Agroforestry. pp. 1-13

[14] Anantasook, N. and Wanapat, M. (2012). Infl uence of Rain Tree Pod Meal Supplementation on Rice Straw Based Diets Using In vitro Gas Fermentation Technique. Asian-Australasian Journal of Animal Sciences. Vol. 25, Issue 3, pp. 325-334. DOI: 10.5713/ajas.2011.11131

[15] AOAC. (1985). Official Methods of Analysis, 14th ed. Association of Official Analytical Chemists, Arlington, VA.

[16] Georing, H. K. and Van Soest, P. J. (1970). Forage Fiber Analyses (apparatus, reagent, procedures and some application). Agriculture Handbook No. 379. U.S. Agricultural Research Service

[17] Menke, H. H. and Steingass, H. (1988). Estimation of the Energetic Feed Value Obtained from Chemical Analysis and In vitro Gas Production Using Rumen Fluid. Animal Research and Development. Vol. 28, pp. 7-55

[18] Ørskov, E. R. and McDonald, I. (1979). The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. Journal of Agricultural Science Cambridge. Vol. 92, pp. 499-503. DOI: 10.1017/S0021859600063048

[19] SAS. (1985). User’s Guide: Statistics. SAS Institute Inc., Cary, North Carolina.

[20] Steel, R. G. D. and Torrie, J. H. (1960). Principles and Procedure of Statistics. (With special Reference to the Biological Sciences.) McGraw‐Hill Book Company, New York, Toronto, London

[21] Delgado, D. C., Hera, R., Cairo, J., and Orta, Y. (2014). Samanea saman, a Multi-Purpose Tree with Potentialities as Alternative Feed for Animals of Productive Interest. Cuban Journal of Agricultural Science. Vol. 48, No. 3, pp. 205-212

[22] Obasi, N. L., Egbuonu, A. C. C., Ukoha, P. O., and Ejikeme, P. M. (2010). Comparative Phytochemical and Antimicrobial Screening of Some Solvent Extracts of Samanea saman(fabaceae or mimosaceae) pods. African Journal of Pure and Applied Chemistry. Vol. 4, No. 9, pp. 206-212

[23] Ukoha, P. O., Cemaluk, E. A. C., Nnamdi, O. L., and Madaus, E. P. (2011). Tannins and Other Phytochemical of the Samanaea saman Pods and Their Antimicrobial Activities. African Journal of Pure and Applied Chemistry. Vol. 5, No. 8, pp. 237-244

[24] Semae, S., Kongmun, P., Vajrabukka, C., Chanpongsang, S., and Prasanphanich, S. (2013). Effects of Different Levels of Rain Tree (Samanea saman) Pods in Meal Concentrate on In vitro Fermentation by a Gas Production Technique. Kasetsart Journal, Natural Science. Vol. 47, No. 5, pp. 704-711

[25] Mahoney, N., Molyneux, R. J., Kim, J. H., Cambell, B. C., Waiss, A. C., and Hagerman, A. E. (2010). Aflatoxigenesis Induced in Aspergillus flavus by Oxidative Stress and Reduction by Phenolic Antioxidants from Tree Nuts. World Mycotoxin Jounal. Vol. 3, No. 1, pp. 49-57. DOI: 10.3920/WMJ2009.1185

[26] Jetana, T., Usawang, S., and Sophon, S. (2015). The use of Tropical of Multiproposes Trees as a Feed Supplement to Thai Swamp Buffaloes (Bubalus bubalis) Reciving a Basal Diet of Pangola hay. Buffalo Bulletin. Vol. 34, No. 1, pp. 130-144

[27] Babayemi, O. J., Inyang, U. A., Ifut, O. J., and Isaac, L. J. (2010). Nutritional Value of Cassava Wastes Ensiled with Albizia saman Pod as Feed for Ruminants in Off Season. Agricultural Journal. Vol. 5, No. 3, pp. 220-224

[28] Tahmourespour, A., Tabatabaei, N., Khalkhali, H., and Amini, I. (2017). Study of Tannin-Degrading Bacteria Isolated from Pistachio Soft Hulls and Feces of Goat Feeding on it. Biological Journal of Microorganism. Vol. 5, No. 20, pp. 61-69

[29] Haskard, C. A., El-Nezami, H. S., Kankaanpaa, P. E., Salminen, S., and Ahokas, J. T. (2001). Surface Binding of Aflatoxin B1 by Lactic Acid Bacteria. Applied and Environmental Microbiology. Vol. 67, No. 7, pp. 3086-3091. DOI: 10.1128/AEM.67.7.3086-3091.2001

[30] Peltonen, K. D., El-Nezami, H. S., Salminen, S. J., and Ahogas, J. T. (2000). Binding of Aflatoxin B1 by Probiotic Bacteria. Journal of the Science of Food and Agriculture. Vol. 80, Issue 13, pp. 1942-1945. DOI: 10.1002/1097-0010(200010)80:13<1942::AID-JSFA741>3.0.CO;2-7

[31] Peltonen, K. D., El-Nezami, H. S., Haskard, C. A., Ahokas, J. T., and Salminen, S. J. (2001). Aflatoxin B1 Binding by Dairy Strains of Lactic Acid Bacteria and Bifidobacteria. Journal of Dairy Science. Vol. 84, Issue 10, pp. 2152-2156. DOI: 10.3168/jds.S0022-0302(01)74660-7

[32] Batish, V. K., Roy, U., Lal, R., and Grover, S. (1997). Antifungal Attributes of Lactic Acid Bacteria - A review. Critical Reviews in Biotechnology. Vol. 17, Issue 3, pp. 2009-2225. DOI: 10.3109/07388559709146614

[33] Sathe, S. J., Nawani, N. N., Dhakephalkar, P. K., and Kapadnis, B. P. (2007). Antifungal Lactic Acid Bacteria with Potential to Prolong Shelf-Life of Fresh Vegetables. Journal of Applied Microbiology. Vol. 103, Issue 6, pp. 2622-2628. DOI: 10.1111/j.1365-2672.2007.03525.x

[34] Intanool, M. and Pattarajinda, V. (2015). Effect of Aflatoxin and Roughage Sourceson Nutrients Digestibility and In vitro Gas Production. Khon Kaen Agriculture Journal. Vol. 43, SUPPL. 1, pp. 33-38

[35] Dali, D. K. D., Deschamps, A. M., and Richard-Forget, F. (2010). Lactic Acid Bacteria - Potential for Control of Mould Growth and Mycotoxins: A Review. Food Control. Vol. 21, Issue 4, pp. 370-380. DOI:10.1016/j.foodcont.2009.07.011

[36] Zinedine, A., Faid, M., and Benlemlih, M. (2005). In Vitro Reduction of Aflatoxin B1 by Strains of Lactic Acid Bacteria Isolated from Moroccan Sourdough Bread. International Journal of Agriculture and Biology. Vol. 7, No. 1, pp. 67-70

[37] Niderkorn, V., Boudra, H., and Morgavi, D. (2006). Binding of Fusarium mycotoxins by Fermentative Bacteria In vitro. Journal Applied Microbiology. Vol. 101, Issue 4, pp. 849-856. DOI: 10.1111/j.1365-2672.2006.02958.x

[38] Sezer, C., Guven, A., Oral, N. B., and Vatansever, L. (2013). Detoxification of afl atoxin B1 by bacteriocins and bacteriocinogenic lactic acid bacteria. Turkish Journal of Veterinary and Animal Sciences. Vo. 37, pp. 594-601. DOI: 10.3906/vet-1301-31

[39] El-Nezami, H., Kankaanpaa, P., Salminen, S., and Ahokas, J. (1998). Ability of Dairy Strains of Lactic Acid Bacteria to Bind a Common Food Carcinogen, Aflatoxin B1. Food and Chemical Toxicology. Vol. 36, Issue 4, pp. 321-326. DOI: 10.1016/S0278-6915(97)00160-9

[40] Zhang, X. B. and Ohta, Y. (1991). Binding of Mutagens by Fractions of the Cell Wall Skeleton of Lactic Acid Bacteria on Mutagens. Journal of Dairy Science. Vol. 74, Issue 5. pp. 477-481. DOI: 10.3168/jds.S0022-0302(91)78306-9

[41] Wanapat, M. (1985). Improving Rice Straw Quality as Ruminant Feed by Urea Treatment in Thailand. pp. 121-145. In: Wanapat, M. and Devendra, C. (eds.). Relevance of Crop Residues as Animal Feeds in Developing Countries. Funny Press, Bangkok, Thailand.

[42] Kiessling, K. H., Pettersson, H., Sandholm, K., and Olsen, M. (1984). Metabolism of Aflatoxin, Ochratoxin, Zearalenone, and Threetrichothecenes by Intact Rumen Fluid, Rumen Protozoa, Andrumen Bacteria. Appled and Environmental Microbiology. Vol. 47, pp. 1070-1073

[43] Kuilman, M. E. M., Maas, R. F. M., Judah, D. J., and Gremmels, J. (1998). Bovine Hepatic Metabolism of Aflatoxin B1. Journal of Agricultural and Food Chemistry. Vol. 46, pp. 2707-2713. DOI: 10.1021/jf980062x

[44] Upadhaya, S. D., Park, M.A., and Ha, J. K. (2010). Mycotoxins and Their Biotransformation in the Rumen: A Review. Asian-Australasian Journal of Animal Sciences. Vol. 23, No. 9, pp. 1250-1260. DOI: 10.5713/ajas.2010.r.06

[45] Xiao, H., Marquardt, R.R., Frohlich, A. A., Phillips, G. D., and Vitti, T.G. (1991). Effect of a Hay and a Grain Diet on the Rate of Hydrolysis of Ochratoxin A in the Rumen of Sheep. Journal of Animal Science. Vol. 69, Issue 93, pp. 706-3714. DOI: 10.2527/1991.6993706x

[46] Muller, H. M., Muller, K., and Steingass, H. (2001). Effect of Feeding Regime on the Metabolism of Ochratoxin A During the In vitro Incubation in Buffered Rumen Fluid from Cows. Archiv für Tierernaehrung. Vol. 54, Issue 4, pp. 265-279. DOI: 10.1080/17450390109381984

[47] Yang, L. (2010). Effects of Feed Types on OTA biodegradation by Korean Native Goats. Masters’ Thesis, Seoul National University, Seoul.