Changes in Antioxidant Activity and Angiotensin I-Converting Enzyme Inhibition of Plaa-som During Fermentation

Main Article Content

Chompoonuch Khongla
Sumalee Musika
Araya Ranok
Chanida Kupradit
Seksan Mangkalanan

Abstract

The objective of this research was to study the changes in α-amino acid content, antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities of Plaa-som obtained from fermentation of various types of freshwater fish for 0, 3 and 4 days, including study the antioxidant activity of Plaa-som after the simulated gastrointestinal (GI) digestion. The results found that Plaa-som at 3 and 4 days of fermentation contained higher α-amino acid content, ABTSgif.latex?\cdot&space;+  cation radical scavenging activity and ferric reducing antioxidant power than that of day 0. Plaa-som obtained from Henicorhynchus siamensis and Thynnicnthys thynnoides at 3 and 4 days of fermentation had higher α-amino acid content and antioxidant activities than that Osteochilus hasseltii and Labiobarbus siamensis. Plaa-som obtained from Henicorhynchus siamensis was selected for determination of ACE-inhibitory activity. The results found that Plaa-som at 3 day of fermentation exhibited the highest ACE-inhibitory activity. Thus, Plaa-som obtained from Henicorhynchus siamensis at 3 day of fermentation was selected for determination of α-amino acid content and ABTSgif.latex?\cdot&space;+  cation radical scavenging activity after simulated gastrointestinal (GI) digestion. The results found that α-amino acid content increased, while antioxidant activity did not change after simulated gastrointestinal (GI) digestion when compared with undigested Plaa-som. The results of this study indicate that Plaa-som obtained from Henicorhynchus siamensis at 3 day of fermentation is a good source of natural antioxidant and ACE-inhibitory peptides.

Article Details

How to Cite
[1]
C. . Khongla, S. . Musika, A. . Ranok, C. . Kupradit, and S. . Mangkalanan, “Changes in Antioxidant Activity and Angiotensin I-Converting Enzyme Inhibition of Plaa-som During Fermentation”, RMUTI Journal, vol. 13, no. 2, pp. 127–144, Nov. 2019.
Section
Research article

References

Pongrut, S. (2017). Strategic Management of Plaa Som Products in Yala. An Independent Study Submitted in Partial Fulfillment of the Requirements for the Master of Business Administration. Faculty of Management Science, School Yala Rajabhat University

Saithong, P., Panthavee, W., Boonyaratanakorkit, M., and Sikkhamondhol, C. (2010). Use of a Starter Culture of Lactic Acid Bacteria in Plaa-Som, a Thai Fermented Fish. Journal of Bioscience and Bioengineering. Vol. 110, Issue 5, pp. 553-557. DOI: 10.1016/j.jbiosc.2010.06.004

Chaikham, P. and Kaewjinda, R. (2017). Quality Changes of Plaa-Som during Fermentation Along with Difference Levels of Probiotic Lactobacillus casei 01. VRU Research and Development Journal Science and Technology. Vol. 12, No. 3, pp. 37-53 (in Thai)

WHO (2018). Noncommunicable Diseases. Access (11 June 2018). Available (http://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases)

Mentz, R. J., Bakris, G. L., Waeber, B., McMurray, J. J. V., Gheorghiade, M., Ruilope, L. M., and Pitt, B. (2013). The Past, Present and Future of Renin-Angiotensin Aldosterone System Inhibition. International Journal of Cardiology. Vol. 167, Issue 5, pp. 1677-1687. DOI: 10.1016/j.ijcard.2012.10.007

Villadóniga, C. and Cantera, A. M. B. (2019). New ACE-Inhibitory Peptides Derived from α-Lactalbumin Produced by Hydrolysis with Bromelia antiacantha Peptidases. Biocatalysis and Agricultural Biotechnology. Vol. 20, DOI: 10.1016/j.bcab.2019.101258

FitzGerald, R. J., Murray, B. A., and Walsh, D. J. (2004). Hypotensive Peptides from Milk Proteins. The Journal of Nutrition. Vol. 134, Issue 4, pp. 980-988. DOI: 10.1093/jn/134.4.980S

Je, J. Y., Park, J. Y., Jung, W. K., Park, P. J., and Kim, S. K. (2005). Isolation of Angiotensin I Converting Enzyme (ACE) Inhibitor from Fermented Oyster Sauce, Crassostrea gigas. Food Chemistry. Vol. 90, Issue 4, pp. 809-814. DOI: 10.1016/j.foodchem.2004.05.028

Ichimura, T., Hu, J., Aita, D. Q., and Maruyama, S. (2003). Angiotensin I-Converting Enzyme Inhibitory Activity and Insulin Secretion Stimulative Activity of Fermented Fish Sauce. Journal of Bioscience and Bioengineering. Vol. 96, Issue 5, pp. 496-499. DOI: 10.1016/S1389-1723(03)70138-8

Goodman, M., Bostick, R. M., Kucuk, O., and Jones, D. P. (2011). Clinical Trials of Antioxidants as Cancer Prevention Agents: Past, Present, and Future. Free Radical Biology and Medicine. Vol. 51, Issue 5, pp. 1068-1084. DOI: 10.1016/j.freeradbiomed.2011.05.018

Sugamura, K. and Keaney, J. F. Jr. (2011). Reactive Oxygen Species in Cardiovascular Disease. Free Radical Biology and Medicine. Vol. 51, Issue 5, pp. 978-992. DOI: 10.1016/j.freeradbiomed.2011.05.004

Butterfield, D. A. and Lauderback, C. M. (2002). Lipid Peroxidation and Protein Oxidation in Alzheimer’s Disease Brain: Potential Causes and Consequences Involving Amyloid β-peptide-Associated Free Radical Oxidative Stress. Free Radical Biology and Medicine. Vol. 32, Issue 11, pp. 1050-1060. DOI: 10.1016/S0891-5849(02)00794-3

Samaranayaka, A. G. P. and Li-Chan, E. C. Y. (2011). Food-Derived Peptidic Antioxidants: A Review of Their Production, Assessment, and Potential Applications. Journal of Functional Foods. Vol. 3, Issue 4, pp. 229-254. DOI: 10.1016/j.jff.2011.05.006

Jung, W. K., Rajapakse, N., and Kim, S. K. (2005). Antioxidative Activity of a Low Moecular Weight Peptide Derived from the Sauce of Fermented Blue Mussel, Mytilus edulis. European Food Research and Technology. Vol. 220, pp. 535-539. DOI: 10.1007/s00217-004-1074-3

Harada, K., Okano, C., Kadoguchi, H., Okubo, Y., Ando, M., and Kitao, S. (2003). Peroxyl Radical Scavenging Capability of Fish Sauces Measured by the Chemiluminescence Method. International Journal of Molecular Medicine. Vol. 12, Issue 4, pp. 621-625. DOI: 10.3892/ijmm.12.4.621

Peralta, E. M., Hatate, H., Kawabe, D., Kuwahara, R., Wakamatsu, S., Yuki, T., and Murata, H. (2008). Improving Antioxidant Activity and Nutritional Components of Philippine Salt-Fermented Shrimp Paste through Prolonged Fermentation. Food Chemistry. Vol. 111, Issue 1, pp. 72-77. DOI: 10.1016/j.foodchem.2008.03.042

Anggo, A. D., Ma’ruf, W. F., Swastawati, F., and Rianingsih, L. (2015). Changes of Amino and Fatty Acids in Anchovy (Stolephorus sp). Fermented Fish Paste with Different Fermentation Periods. Procedia Environmental Sciences. Vol. 23, pp. 58-63. DOI: 10.1016/j.proenv.2015.01.009

Sawatdichaikul, O., Madmanee, W., Tangkanakul, P., and Trakoontivakorn, G. (2014). In vitro Antioxidant Activity of Peptide Fragments from Fermented Channa striata. The 4th International Biochemistry and Molecular Biology Conference. April 2-3, Bangkok, Thailand

Promchote, P. T. (2017). Chemical Compositions and Antioxidant Properties of Pla-ra Thai Indigenous Fermented Fish Product. Journal of Science and Technology Ubon Ratchathani University. Vol. 19, No. 2, pp. 159-172 (in Thai)

Picariello, G., Ferranti, P., Fierro, O., Mamone, G., Caira, S., and Di Luccia, A. (2010). Peptides Surviving the Simulated Gastrointestinal Digestion of Milk Proteins: Biological and Toxicological Implications. Journal of Chromatography B. Vol. 878, Issue 3-4, pp. 295-308. DOI: 10.1016/j.jchromb.2009.11.033

Ao, J. and Li, B. (2013). Stability and Antioxidative Activities of Casein Peptide Fractions During Simulated Gastrointestinal Digestion In Vitro: Charge Properties of Peptides Affect Digestive Stability. Food Research International. Vol. 52, Issue 1, pp. 334-341. DOI: 10.1016/j.foodres.2013.03.036

Singh, B. P. and Vij, S. (2018). In vitro Stability of Bioactive Peptides Derived from Fermented Soy Milk Against Heat Treatment, pH and Gastrointestinal Enzymes. LWT. Vol. 91, pp. 303-307. DOI: 10.1016/j.lwt.2018.01.066

AOAC (2000). Official Methods of Analysis (17th ed.). Gaithersburg, MD, USA: Association of Official Chemists

Adler-Nissen, J. (1979). Determination of the Degree of Hydrolysis of Food Protein Hydrolyzates by Trinitrobenzenesulfonic Acid. Journal of Agricultural and Food Chemistry. Vol. 27, Issue 6, pp. 1256-1262. DOI: 10.1021/jf60226a042

Wiriyaphan, C., Chitsomboon, B., and Yongsawadigul, J. (2012). Antioxidant Activity of Protein Hydrolysates Derived from Threadfin Bream Surimi Byproducts. Food Chemistry. Vol. 132, Issue 1, pp. 104-111. DOI: 10.1016/j.foodchem.2011.10.040

Cushman, D. W. and Cheung, H. S. (1971). Spectrophotometric Assay and Properties of the Angiotensin-Converting Enzyme of Rabbit Lung. Biochemical Pharmacology. Vol. 20, Issue 7, pp. 1637-1648. DOI: 10.1016/0006-2952(71)90292-9

Wiriyaphan, C., Xiao, H., Decker, E.A., and Yongsawatdigul, J. (2015). Chemical and Cellular Antioxidative Properties of Threadfin Bream (Nemipterus spp.). Surimi Byproduct Hydrolysates Fractionated by Ultrafiltration. Food Chemistry. Vol. 167, pp. 7-15. DOI: 10.1016/j.foodchem.2014.06.077

Thai Community Product Standard (TCPS). (2014). Standard for Fermented Fish, Pla-Som no. 26/2014. Thai Industrial Standards Institute. Ministry of Industry, Bangkok

Onsa-ard, E., Promchote, P. T., and Maweang, M. (2011). A Study of Cultural Local Fermented Food Production in Ubon Ratchathani. Final Report Project of Culture and Arts Preservation and Maintainace. p. 65 (in Thai)

Huff -Lonergan, E. and Lonergan, S. M. (2005). Mechanisms of Water-Holding Capacity of Meat: the Role of Postmortem Biochemical and Structural Changes. Meat Science. Vol. 71, Issue 1, pp. 194-204. DOI: 10.1016/j.meatsci.2005.04.022

Jittrepotch, N., Rojsuntornkitti, K., and Kongbangkerd, T. (2015). Physico-Chemical and Sensory Properties of Plaa-som, a Thai Fermented Fish Product Prepared by using Low Sodium Chloride Substitutes. International Food Research Journal. Vol. 22, Issue 2, pp. 721-730

Molly, K., Demeyer, D., Johansson, G., Raemeakers, M., Ghistelinck, M., and Geenen, I. (1997). The Importance of Meat Enzymes in Ripening and Flavour Generation in Dry Fermented Sausages. First Results of a European Project. Food Chemistry. Vol. 59, Issue 4, pp. 539-545. DOI: 10.1016/S0308-8146(97)00004-6

Riebroy, S., Benjakul, S., Visessanguan, W., Kijrongrojana, K., and Tanaka, M. (2004). Some Characteristics of Commercial Som-fug Produced in Thailand. Food Chemistry. Vol. 88, Issue 4, pp. 527-535. DOI: 10.1016/j.foodchem.2004.01.067

Shahidi, F. and Zhong, Y. (2008). Bioactive Peptides. Journal of AOAC International. Vol. 91, Issue 4, pp. 914-931. DOI: 10.1093/jaoac/91.4.914

Ryan, J. T., Ross, R. P., Bolton, D., Fitzgerald, G. F., and Stanton, C. (2011). Bioactive Peptides from Muscle Sources: Meat and Fish. Nutrients. Vol. 3, Issue 9, pp. 765-791. DOI: 10.3390/nu3090765

Meisel, H. and FitzGerald, R. J. (2003). Biofunctional Peptides from Milk Proteins: Mineral Binding and Cytomodulatory Effects. Current Pharmaceutical Design. Vol. 9, Issue 16, pp. 1289-1295. DOI: 10.2174/1381612033454847

Phanturat, P., Benjakul, S., Visessanguan, W., and Roytrakul, S. (2010). Use of Pyloric Caeca Extract from Bigeye Snapper (Priacanthus macracanthus) for the Production of Gelatin Hydrolysate with Antioxidative Activity. LWT- Food Science and Technology. Vol. 43, Issue 1, pp. 86-97. DOI: 10.1016/j.lwt.2009.06.010

Qian, Z. L., Jung, W. K., and Kim, S. K. (2008). Free Radical Scavenging Activity of a Novel Antioxidative Peptide Purified from Hydrolysate of Bullfrog Skin, Rana catesbeiana Shaw. Bioresource Technology. Vol. 99, Issue 6, pp. 1690-1698. DOI: 10.1016/j.biortech.2007.04.005

Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., and Kim, S. K. (2005). Purification of a Radical Scavenging Peptide from Fermented Mussel Sauce and Its Antioxidant Properties. Food Research International. Vol. 38, Issue 2, pp. 175-182. DOI: 10.1016/j.foodres.2004.10.002

Mendis, E., Rajapakse, N., Byun, H. G., and Kim, S. K. (2005). Investigation of Jumbo Squid (Dosidicus gigas) Skin Gelatin Peptides for Their In Vitro Antioxidant Effects. Life Sciences. Vol. 77, Issue 17, pp. 2166-2178. DOI: 10.1016/j.lfs.2005.03.016

Mendis, E., Rajapakse, N., and Kim, S. K. (2005). Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. Journal of Agricultural and Food Chemistry. Vol. 53, Issue 3, pp. 581-587. DOI: 10.1021/jf048877v

Sadat, L., Cakir-Kiefer, C., N’Negue, M. A., Gaillard, J. L., Girardet, J. M., and Miclo, L. (2011). Isolation and Identification of Antioxidative Peptides from Bovine α-Lactalbumin. International Dairy Journal. Vol. 21, No. 4, pp. 214-221. DOI: 10.1016/j.idairyj.2010.11.011

Hernández-Ledesma, B., Davalos, A., Bartolome, B., and Amigo, L. (2005). Preparation of Antioxidant Ensymatichydrolysates from α-Lactalbumin and β-Lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry. Vol. 53, Issue 3, pp. 588-593. DOI: 10.1021/jf048626m

Jemil, I., Mora, L., Nasri, R., Abdelhedi, O., Aristoy, M. C., Hajji, M., Nasri, M., and Toldrá, F. (2016). A Peptidomic Approach for the Identification of Antioxidant and ACE-Inhibitory Peptides in Sardinelle Protein Hydrolysates Fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Research International. Vol. 89, Part 1, pp. 347-358. DOI: 10.1016/j.foodres.2016.08.020

Nasri, R., Jridi, M., Lassoued, I., Jemil, I., and Ben Slama-Ben Salem, R. (2014). The Influence of the Extent of Enzymatic Hydrolysis on Antioxidative Properties and ACE-Inhibitory Activities of Protein Hydrolysates from Goby (Zosterisessor ophiocephalus) Muscle. Applied Biochemistry and Biotechnology. Vol. 173, pp. 1121-1134. DOI: 10.1007/s12010-014-0905-3