Comparison of Dye-Sensitized Solar Cells Performance using Natural Dye Sensitizer Extracted from Zingiber cassumunar and Clitoria ternatea
Main Article Content
Abstract
This research investigated the use of natural dye sensitizer extracted from Zingiber cassumunar and Clitoria ternatea for dye-sensitized solar cells (DSCs). The results showed that natural dye sensitizer on TiO2 absorbed visible light in a region with peak between 400 and 800 nm. Photoelectrochemical properties of two natural dye sensitizers were compared in the extraction conditions at constant pH of 7, with the varying of extraction mass per volume of solvent: 1, 3, 5, 7, 9, 11, 15, and 20 %w/v. It was found that the highest maximum power of DSCs of both natural dye sensitizers reached to the constant when using of 11 %w/v.
Dye sensitizer from Zingiber cassumunar showed the highest maximum power of 1.493 W/cm2 at 15 %w/v while dye sensitizer from Clitoria ternatea showed the highest maximum power of 0.684 W/cm2 at 5 %w/v. The following experiment at constant of 11 %w/v, with the varying of extraction pH values: 2.4, 4.3, 7.0, 9.4, and 11.0. It was found that the highest maximum power of DSCs using both natural dye sensitizers of 1.444 and 0.700 W/cm2 at extraction pH 7.0 and 4.3, respectively. From both conditions, the photoelectrochemical properties of DSCs with dye sensitizer from Zingiber cassumunar were found to be apparently higher than that of Clitoria ternatea.
Article Details
References
[2] Papageorgiou, N. (2004). Counter-Electrode Function in Nanocrystalline Photoelectrochemical Cell Configurations. Coordination Chemistry Reviews. Vol. 248, Issue 13-14, pp. 1421-1446. DOI: 10.1016/j.ccr.2004.03.028
[3] Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., and Han, L.Y. (2006). Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1 %. Japanese Journal of Applied Physics. Vol. 45, Issue 25, pp. L638-L640. DOI: 10.1143/JJAP.45.L638
[4] Buscaino, R., Baiocchi, C., Barolo, C., Medana, C., Grätzel, M., Nazeeruddin, Md. K., and Viscardi, G. (2008). A Mass Spectrometric Analysis of Sensitizer Solution Used for Dye-Sensitized Solar Cell. Inorganica Chimica Acta. Vol. 361, Issue 3, pp. 798-805. DOI: 10.1016/j.ica.2007.07.016
[5] Zhang, G., Bala, H., Cheng, Y., Shi, D., Lv, X., Yu, Q., and Wang, P. (2009). High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary-Conjugated Spacer. Chemical Communications. Issue 16, pp. 2198-2200. DOI: 10.1039/b822325d
[6] Espinosa, R., Zumeta, I., Santana, J. L., Mart nez-Luzardo, F., Gonza lez, B., Docteur, S., and Vigil, E. (2005). Nanocrystalline TiO2 Photosensitized with Natural Polymers with Enhanced Efficiency from 400 to 600 nm. Solar Energy Materials and Solar Cells. Vol. 85, Issue 3, pp. 359-369
[7] Kumara, G. R. A., Kaneko, S., Okuya, M., Onwona-Agyeman, B., Konno, A., and Tennakone, K. (2006). Shiso Leaf Pigments for Dye-Sensitized Solid-State Solar Cell. Solar Energy Materials and Solar Cells. Vol. 90, Issue 9, pp. 1220-1226. DOI: 10.1016/j.solmat.2005.07.007
[8] Furukawa, S., Iino, H., Iwamoto, T., Kukita, K. and Yamauchi, S. (2009). Characteristics of Dye-Sensitized Solar Cells Using Natural Dye. Thin Solid Films. Vol. 518, No. 2, pp. 526-529
[9] Gómez-Ortíz, N. M., Vázquez-Maldonado, I. A., Pérez-Espadas, A. R., Mena-Rejón, G. J., Azamar-Barrios, J. A., and Oskam, G. (2010). Dye-Sensitized Solar Cells with Natural Dyes Extracted from Achiote Seeds. Solar Energy Materials and Solar Cells. Vol. 94, Issue 1, pp. 40-44. DOI: 10.1016/j.solmat.2009.05.013
[10] Hao, S., Wu, J., Huang, Y., and Lin, J. (2006). Natural Dyes as Photosensitizers for Dye-Sensitized Solar Cell. Solar Energy. Vol. 80, Issue 2, pp. 209-214. DOI: 10.1016/j.solener.2005.05.009
[11] Nishantha, M. R., Yapa, Y. P. Y. P., and Perera, V. P. S. (2012). Sensitization of PhotoelectroChemical Solar Cells with a Natural Dye Extracted from Kopsia Flavida Fruit. In Proceedings of the 28th Technical Sessions. March 2012, Kelaniya, Sri Lanka, Institute of Physics - Sri Lanka. pp. 54-58
[12] Mozaff ari, S. A., Saeidi, M., and Rahmanian, R. (2015). Photoelectric Characterization of Fabricated Dye-Sensitized Solar Cell Using Dye Extracted from Red Siahkooti Fruit as Natural Sensitizer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Vol. 142, pp. 226-231. DOI: 10.1016/j.saa.2015.02.003
[13] Ganta, D., Jara, J., and Villanueva, R. (2017). Dye-Sensitized Solar Cells Using Aloe Vera and Cladode of Cactus Extracts as Natural Sensitizers. Chemical Physics Letters. Vol. 679, pp. 97-101. DOI: 10.1016/j.cplett.2017.04.094
[14] Ganesh, T., Kim, J. H., Yoon, S. J., Lee, S., Lee, W., Mane, R. S., Han, J. W., and Han, S. H. (2009). Dye Anchored ZnO Nanoparticles: The Positive and Negative Photoluminescence Quenching Effects. Journal of Applied Physics. Vol. 106, Issue 8, DOI: 10.1063/1.3245398
[15] Teoli, F., Lucioli, S., Nota, P., Frattarelli, A., Matteocci, F., Carlo, A.Di and Caboni, E. (2016). Role of pH and Pigment Concentration for Natural Dye-Sensitized Solar Cells Treated with Anthocyanin Extracts of Common Fruits. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 316, pp. 24-30
[16] Kolev, T. M., Velcheva, E. A., Stamboliyska, B. A., and Spiteller, M. (2005). DFT and Experimental Studies of the Structure and Vibrational Spectra of Curcumin. International Journal of Quantum Chemistry. Vol. 102, Issue 6, pp. 1069-1079
[17] Shalini, S., Balasundara prabhu, R., Prasanna, S., Mallick, Tapas K., and Senthilarasu, S. (2015). Review on Natural Dye Sensitized Solar Cells: Operation, Materials and Methods. Renewable and Sustainable Energy Reviews. Vol. 51, Issue C, pp. 1306-1325. DOI: 10.1016/j.rser.2015.07.052
[18] Lopes, T. J., Yaginuma, S. R., Novy Quadri, M. G., and Bastos Quadri, M. (2011). Evaluation of Red Cabbage Anthocyanins After Partial Purification on Clay. Brazilian Archives of Biology and Technology. Vol. 54, No. 6, pp.1349-1356. DOI: 10.1590/S1516-89132011000600022
[19] Meng, S., Ren, J., and E. Kaxiras, E. (2008). Natural Dyes Adsorbed on TiO2 Nanowire for Photovoltaic Applications: Enhanced Light Absorption and Ultrafast Electron Injection. Nano Letters. Vol. 8, No. 10, pp. 3266-3272. DOI: 10.1021/nl801644d
[20] Ma, T., Inoue, K., Noma, H., Yao, K., and Abe, E. (2002). Effect of Functional Group on Photochemical Properties and Photosensitization of TiO2 Electrode Sensitized by Porphyrin Derivatives. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 152, Issue 1-3, pp. 207-212. DOI: 10.1016/S1010-6030(02)00025-4
[21] Wongcharee, K., Meeyoo, V., and Chavadej, S. (2007). Dye-Sensitized Solar Cell Using Natural Dyes Extracted from Rosella and Blue Pea Flowers. Solar Energy Materials and Solar Cells. Vol. 91, No. 7, pp. 566-571
[22] Hamadanian, M., Safaei-Ghomi, J., Hosseinpour, M., and Masoomi, R. (2014). Uses of New Natural Dye Photosensitizers in Fabrication of High Potential Dye-Sensitized Solar Cells (DSSCs). Materials Science in Semiconductor Processing. Vol. 27, pp. 733-739. DOI: 10.1016/j.mssp.2014.08.017
[23] Hossain, Md. K., Pervez, M. F., Mia, M. N. H., Mortuza, A. A., Rahaman, M. S., Karim, M. R., Islam, J. M. M., Ahmed, F., and Khan, M. A. (2017). Effect of Dye Extracting Solvents and Sensitization Time on Photovoltaic Performance of Natural Dye Sensitized Solar Cells. Results in Physics. Vol. 7, pp. 1516-1523. DOI: 10.1016/j.rinp.2017.04.011
[24] Rajab, F. M. (2015). Effect of Solvent, Dye-Loading Time, and Dye Choice on the Performance of Dye-Sensitized Solar Cells. Journal of Nanomaterials. Vol. 2016, p. 8. DOI: 10.1155/2016/3703167
[25] Narayan, M. and Raturi, A. (2011). Investigation of Some Common Fijian Flower Dyes as Photosensitizers for Dye Sensitized Solar Cellsabstract. Applied Solar Energy. Vol. 47, No. 2, pp. 112-117. DOI: 10.3103/S0003701X11020149
[26] Zhou, H., Wu, L., Gao, Y., and Ma, T. (2011). Dye-Sensitized Solar Cells using 20 Natural Dyes as Sensitizers. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 219, Issue 2-3, pp. 188-194. DOI: 10.1016/j.jphotochem.2011.02.008
[27] Crivello, J. V. and Bulut, U. (2005). Curcumin: A Naturally Occurring Long-Wavelength Photosensitizer for Diaryliodonium Salts. Journal of Polymer Science Part A: Polymer Chemistry. Vol. 43, No. 21, pp. 5217-5231. DOI: 10.1002/pola.21017
[28] Hao, S., Wu, J., Fan, L., Huang, Y., Lin, J., and Wei, Y. (2004). The Influence of Acid Treatment of TiO2 Porous Film Electrode on Photoelectric Performance of Dye-Sensitized Solar Cell. Solar Energy. Vol. 76, pp. 745-750