Development of the Bio-Based Economy: Conversion of Rice, Sugar Cane and Oil Palm Residues to Value-Added Products

Main Article Content

อาทิตย์ อัศวสุขี
นิภาวรรณ เป้งกลาง
พัสตราภรณ์ กิจศิริ
รัชดาวรรณ ตามกลาง
ฐิติพร วัฒนกุล

Abstract

Thailand 4.0 is an economic model that focuses on the concept of inclusive, productive and green growth engine to enhance the country’s competitiveness and economic development. Under the model, the bio-based economy can generate new markets for agricultural producers, boost innovation in domestic manufacturing, and stimulate sustainable economic growth. This article focuses on the conversion of agricultural residues (i.e., rice, sugar cane and oil palm residues) into value-added products (e.g., food additive, cosmetic, energy, chemicals, materials and pharmaceutical products). The key conversion
involved in the processing of agricultural residues are thermochemical, biochemical and chemical process. This paper would provide not only a potential to develop a technology for agricultural residues conversion, but also a guide for pulling Thailand out of the middle-income trap and developing it as a high-income country.

Article Details

How to Cite
[1]
อัศวสุขี อ., เป้งกลาง น., กิจศิริ พ., ตามกลาง ร., and วัฒนกุล ฐ., “Development of the Bio-Based Economy: Conversion of Rice, Sugar Cane and Oil Palm Residues to Value-Added Products”, RMUTI Journal, vol. 11, no. 3, pp. 165–191, Dec. 2018.
Section
บทความวิชาการ (Academic article)

References

[1] Division of Research Administration and Educational Quality Assurance, University of Phayao. (2016). Blueprint Thailand 4.0 Model Drive of Thailand Towards Wealth,
Stability and Sustainable. Access (10 February 2018). Available (https://www.libarts.up.ac.,th/v2/img/Thailand-4.0.pdf) (in Thai)

[2] Ministry of Industry. (2016). 20-Year Development Strategy for Thailand Industry 4.0 (2017-2036). Access (10 February 2018). Available (https://www.oie.go.th/sites/default/files/attachments/industry_plan/thailandindustrialdevelopmentstrategy4.0.pdf) (in Thai)

[3] Office of Agricultural Economics. (2017). Agricultural Statistics of Thailand 2016. Access (10 February 2018). Available ((https://www.oae.go.th/assets/portals/1/files/ebook/yearbook59.pdf)

[4] Kulruengsup, N. (2013). Study on Influence of Burning-No Burning of Rice Stubble Before Harvesting on Yield Per Rai, Outgoing and Income of Farmers. Journal of Agricultural Economics. Vol. 59, pp. 2-4 (in Thai)

[5] Department of Alternative Energy Development and Efficiency, Ministry of Energy. (2012). Feasibility Study for the Commercial Production of Cellulosic Ethanol. Access (10 February 2018). Available (https://webkc.dede.go.th/testmax/sites/default/files/Final%20Report.pdf)

[6] Rodsamran, P. and Sothornvit, R. (2017). Rice Stubble as a New Biopolymer Source to Produce Carboxymethyl Cellulose-Blended Films. Carbohydrate Polymers. Vol. 171, pp. 94-101. DOI: 10.1016/j.carbpol.2017.05.003

[7] Tansatit, T., Rotchanamekha, S., and Thepwong, R. (2016). Biochar Production from Stubble and Rice Straw for Water Holding in Soil. In The 1st National RMUTR Conference. RMUTR: Nakhonpathom. (in Thai)

[8] Zahed, O., Jouzani, G. S., Abbasalizadeh, S., Khodaiyan, F., and Tabatabaei, M. (2016). Continuous Co-Production of Ethanol and Xylitol from Rice Straw Hydrolysate in a Membrane Bioreactor. Folia Microbiologica. Vol. 61, Issue 3, pp. 179-189. DOI: 10.1007/s12223-015-0420-0

[9] Amiri, H., Karimi, K., and Zilouei, H. (2014). Organosolv Pretreatment of Rice Straw for Efficient Acetone, Butanol, and Ethanol Production. Bioresource Technology. Vol. 152, pp. 450-456. DOI: 10.1016/j.biortech.2013.11.038

[10] Zhou, J., Yang, J., Yu, Q., Yong, X., Xie, X., Zhang, L., Wei, P., and Jia, H. (2017). Different Organic Loading Rates on the Biogas Production During the Anaerobic Digestion of Rice Straw: A pilot study. Bioresource Technology. Vol. 244, Part 1, pp. 865-871. DOI: 10.1016/j.biortech.2017.07.146

[11] Sashikala, M. and Ong, H. K. (2007). Synthesis and Identification of Furfural from Rice Straw. Journal of Tropical Agriculture and Food Science. Vol. 35, Issue 1, pp. 165-172

[12] Shen, Y., Zhao, P., and Shao, Q. (2014). Porous Silica and Carbon Derived Materials from Rice Husk Pyrolysis Char. Microporous and Mesoporous Materials. Vol. 188, pp. 46-76. DOI: 10.1016/j.micromeso.2014.01.005

[13] Yoomun, P. (2013). Analysis the Potential of Bio-Energy from Residual Biomasses in Lampang Province. Case study: Mae-Tha District. Industrial Technology Lampang Rajabhat University Journal. Vol. 6, No. 2, pp. 35-45 (in Thai)

[14] Lee, J. H., Kwon, J. H., Lee, J. -W., Lee, H. -S., Chang, J. H., and Sang, B. -I. (2017). Preparation of High Purity Silica Originated from Rice Husks by Chemically Removing Metallic Impurities. Journal of Industrial and Engineering Chemistry. Vol. 50, pp. 79-85. DOI: 10.1016/j.jiec.2017.01.033

[15] Khoshbin, R. and Karimzadeh, R. (2017). The Beneficial use of Ultrasound in Free Template Synthesis of Nanostructured ZSM-5 Zeolite from Rice Husk ash used in Catalytic Cracking of Light Naphtha: Effect of Irradiation Power. Advanced Powder Technology. Vol. 28, Issue 3, pp. 973-982. DOI: 10.1016/j.apt.2017.01.001

[16] Khoshbin, R. and Karimzadeh, R. (2017). Synthesis of Mesoporous ZSM-5 from Rice Husk ash with Ultrasound Assisted Alkali-Treatment Method used in Catalytic Cracking of Light Naphtha. Advanced Powder Technology. Vol. 28, Issue 8, pp. 1888-1897. DOI: 10.1016/j.apt.2017.04.024

[17] Suyanta and Kuncaka, A. (2011). Utilization of Rice Husk as Raw Material in Synthesis of Mesoporous Silicates MCM-41. Indonesian Journal of chemistry. Vol. 11, Issue 3, pp. 279-284

[18] Srivastava, V. C., Mall, I. D., and Mishra, I. M. (2006). Characterization of Mesoporous Rice Husk Ash (RHA) and Adsorption Kinetics of Metal Ions from Aqueous Solution onto RHA. Journal of Hazardous Materials. Vol. B134, Issue 1-3, pp. 257-267. DOI: 10.1016/j.jhazmat.2005.11.052

[19] Boonpoke, A., Chiarakorn, S., Laosiripojana, N., and Chidthaisong A. (2016). Enhancement of Carbon Dioxide Capture by Amine-Modified Rice Husk Mesoporous Material. Environmental Progress & Sustainable Energy. Vol. 35, Issue 6, pp. 1716-1723. DOI: 10.1002/ep.12423

[20] Ghafoorian, N. S., Bahramian, A. R., and Seraji, M. M. (2015). Investigation of the Effect of Rice Husk Derived Si/SiC on the Morphology and Thermal Stability of Carbon Composite Aerogels. Materials and Design. Vol. 86, pp. 279-288. DOI: 10.1016/j.matdes.2015.07.093

[21] Sobrosa, F. Z., Stochero, N. P., Marangon, E., and Tier, M. D. (2017). Development of Refractory Ceramics from Residual Silica Derived from Rice Husk Ash. Ceramics International. Vol. 43, Issue 9, pp. 7142-7146. DOI: 10.1016/j.ceramint.2017.02.147

[22] Husni, H., Nazari, M. R., Yee, H. M., Rohim, R., Yusuff , A., Ariff , M. A. M., Ahmad, N. N. R., Leo, C. P., and Junaidi, M. U. M. (2017). Superhydrophobic Rice Husk ash Coating on Concrete. Construction and Building Materials. Vol. 144, pp. 385-391. DOI: 10.1016/j.conbuildmat.2017.03.078

[23] Geraldo, R. H., Fernandes, L. F. R., and Camarini, G. (2017). Water Treatment Sludge and Rice Husk Ash to Sustainable Geopolymer Production. Journal of Cleaner Production. Vol. 149, pp. 146-155. DOI: 10.1016/j.jclepro.2017.02.076

[24] Guo, M. -L., Yin, X. -Y. and Huang, J. (2017). Preparation of Novel Carbonaceous Solid Acids from Rice Husk and Phenol. Materials Letters. Vol. 196, pp. 23-25. DOI: 10.1016/j.matlet.2017.03.025

[25] Zhang, W., Lin, N., Liu, D., Xu, J., Sha, J., Yin, J., Tan, X., Yang, H., Lu, H., and Lin, H. (2017). Direct Carbonization of Rice Husk to Prepare Porous Carbon for Supercapacitor Applications. Energy. Vol. 128, pp. 618-625. DOI: 10.1016/j.energy.2017.04.065

[26] Jorapur, R. and Rajvanshi, A. K. (1997). Sugarcane Leaf-Bagasse Gasifiers for Industrial Heating Applications. Biomass and Bioenergy. Vol. 13, Issue 3, pp. 141-146. DOI: 10.1016/S0961-9534(97)00014-7

[27] Boochapun, S., Lamamorphanth, W., and Kamwilaisak, K. (2014). The Acid Hydrolysis of Sugarcane Leaves as a Biofeedstock for Bioethanol Production. Advanced Materials Research. Vols. 931-932, pp. 194-199

[28] Moodley, P. and Gueguim Kana, E. B. (2017). Microwave-Assisted Inorganic Salt Pretreatment of Sugarcane Leaf Waste: Effect on Physiochemical Structure and Enzymatic Saccharification. Bioresource Technology. Vol. 235, pp. 35-42. DOI: 10.1016/j.biortech.2017.03.031

[29] Attard, T. M., McElroy, C.Rob, Rezende, C. A., Polikarpov, I., Clark, J. H., and Hunt, A. J. (2015). Sugarcane Waste as a Valuable Source of Lipophilic Molecules. Industrial Crops and Products. Vol. 76, pp. 95-103. DOI: 10.1016/j.indcrop.2015.05.077

[30] Arumugam, A. and Ponnusami, V. (2013). Modified SBA-15 Synthesized Using Sugarcane Leaf Ash for Nickel Adsorption. Indian Journal of Chemical Technology. Vol. 20, pp. 101-105

[31] Kumari, S. and Das, D. (2016). Biologically Pretreated Sugarcane Top as a Potential Raw Material for the Enhancement of Gaseous Energy Recovery by Two Stage Biohythane Process. Bioresource Technology. Vol. 218, pp. 1090-1097. DOI: 10.1016/j.biortech.2016.07.070

[32] Maurya, D. P., Vats, S., Rai, S., and Negi, S. (2013). Optimization of Enzymatic Saccharification of Microwave Pretreated Sugarcane Tops Through Response Surface Methodology for Biofuel. Indian Journal of Experimental Biology. Vol. 51, pp. 992-996

[33] Cunha, J. A., Pereira, M. M., Valente, L. M. M., de la Piscina, P. R., Homs, N., and Santos, M. R. L. (2011). Waste Biomass to Liquids: Low Temperature Conversion of Sugarcane Bagasse to Bio-Oil. The Effect of Combined Hydrolysis Treatments. Biomass and Bioenergy. Vol. 35, Issue 5, pp. 2106-2116. DOI: 10.1016/j.biombioe.2011.02.019

[34] Goncalves, G. C., Pereira, N. C., and Veit, M. T. (2016). Production of Bio-Oil and Activated Carbon from Sugarcane Bagasse and Molasses. Biomass and Bioenergy. Vol. 85, pp. 178-186. DOI: 10.1016/j.biombioe.2015.12.013

[35] Golbaghi, L., Khamforoush, M., and Hatami, T. (2017). Carboxymethyl Cellulose Production from Sugarcane Bagasse with Steam Explosion Pulping: Experimental, Modeling, and Optimization. Carbohydrate Polymers. Vol. 174, pp. 780-788. DOI: 10.1016/j.carbpol.2017.06.123

[36] Candido, R. G., Godoy, G. G., and Goncalves, A. R. (2017). Characterization and Application of Cellulose Acetate Synthesized from Sugarcane Bagasse. Carbohydrate Polymers. Vol. 167, pp. 280-289. DOI: 10.1016/j.carbpol.2017.03.057

[37] Brar, K. K., Sarma, A. K., Aslam, M. Polikarpov, I., and Chadha, B. S. (2017). Potential of Oleaginous Yeast Trichosporon sp., for Conversion of Sugarcane Bagasse Hydrolysate Into Biodiesel. Bioresource Technology. Vol. 242, pp. 161-168. DOI: 10.1016/j.biortech.2017.03.155

[38] Chen, P., Tao, S., and Zheng, P. (2016). Efficient and Repeated Production of Succinic Acid by Turning Sugarcane Bagasse Into Sugar and Support. Bioresource Technology. Vol. 211, pp. 406-413. DOI: 10.1016/j.biortech.2016.03.108

[39] Phachan, N., Fiala, K., and Apirakakorn, J. (2017). Isolation of Cellulolytic Clostridia and Their Performance for One-Step Butanol Production from Sugarcane Bagasse. Energy Procedia. Vol. 138, pp. 163-168. DOI: 10.1016/j.egypro.2017.10.144

[40] Um, J., Kim, D. G., Jung, M. -Y., Saratale, G. D., and Oh, M. -K. (2017). Metabolic Engineering of Enterobacter aerogenes for 2,3-butanediol Production from Sugarcane Bagasse Hydrolysate. Bioresource Technology. Vol. 245, Part B, pp. 1567-1574. DOI: 10.1016/j.biortech.2017.05.166

[41] Adarme, O. F. H., Baeta, B. E. L., Lima, D. R. S., Gurgel, L. V. A., and de Aquino, F. (2017). Methane and Hydrogen Production from Anaerobic Digestion of Soluble Fraction Obtained by Sugarcane Bagasse Ozonation. Industrial Crops and Products. Vol. 109, pp. 288-299. DOI: 10.1016/j.indcrop.2017.08.040

[42] Esfandiar, N., Naserneja, B., and Ebadi, T. (2014). Removal of Mn(II) from Groundwater by Sugarcane Bagasse and Activated Carbon (A Comparative Study): Application of Response Surface Methodology (RSM). Journal of Industrial and Engineering Chemistry. Vol. 20, Issue 5, pp. 3726-3736. DOI: 10.1016/j.jiec.2013.12.072

[43] Alves, M. J., Cavalcanti, I. V., de Resende, M. M., Cardoso, V. L., and Reis, M. H. (2016). Biodiesel Dry Purification with Sugarcane Bagasse. Industrial Crops and Products. Vol. 89, pp. 119-127. DOI: 10.1016/j.indcrop.2016.05.005

[44] Moises, M. P., da Silva, C. T. P., Meneguin, J. G., Girotto, E. M., and Radovanovic, E. (2013). Synthesis of Zeolite NaA from Sugarcane Bagasse Ash. Materials Letters. Vol. 108, pp. 243-246. DOI: 10.1016/j.matlet.2013.06.086

[45] Thuadaij, P. and Mukda, P. (2016). Synthesis and Characterization of Zeolite Derived from Buriram Sugarcane Bagasse Ash and Narathiwat Kaolinite. SNRU Journal of Science and Technology. Vol. 8, No. 3, pp. 320-326

[46] Norsuraya, S., Fazlena, H., and Norhasyimi, R. (2016). Sugarcane Bagasse as a Renewable Source of Silica to Synthesize Santa Barbara Amorphous-15 (SBA-15). Procedia Engineering. Vol. 148, pp. 839-846. DOI: 10.1016/j.proeng.2016.06.627

[47] Shen, Z., Han, G., Liu, C. Wang, X., and Sun, R. (2016). Green Synthesis of Silver Nanoparticles with Bagasse for Colorimetric Detection of Cysteine in Serum Samples.
Journal of Alloys and Compounds. Vol. 686, pp. 82-89. DOI: 10.1016/j.jallcom.2016.05.348

[48] Silalertruksa, T., Gheewala, S. H., and Pongpat, P. (2015). Sustainability Assessment of Sugarcane Biorefinery and Molasses Ethanol Production in Thailand Using Eco-Efficiency Indicator. Applied Energy. Vol. 160, pp. 603-609. DOI: 10.1016/j.apenergy.2015.08.087

[49] Khatiwada, D., Venkata, B. K., Silveira, S., and Johnson, F. X. (2016). Energy and GHG Balances of Ethanol Production from Cane Molasses in Indonesia. Applied Energy. Vol. 164, pp. 756-768. DOI: 10.1016/j.apenergy.2015.11.032

[50] Meng, X., Yuan, X., Ren, J., Wang, X., Zhu, W., and Cui, Z. (2017). Methane Production and Characteristics of the Microbial Community in a Two-Stage Fixed-Bed Anaerobic Reactor Using Molasses. Bioresource Technology. Vol. 241, pp. 1050-1059. DOI: 10.1016/j.biortech.2017.05.181

[51] Amado, I. R., Vazquez, J. A., Pastrana, L., and Teixeira, J. A. (2017). Microbial Production of Hyaluronic Acid from Agro-industrial by-products: Molasses and Corn Steep Liquor. Biochemical Engineering Journal. Vol. 117, Part A, pp. 181-187. DOI: 10.1016/j.bej.2016.09.017

[52] Sharma, M., Patel, S. N., Lata, K., Singh, U., Krishania, M., Sangwan, R. S., and Singh, S. P. (2016). A Novel Approach of Integrated Bioprocessing of Cane Molasses for Production of Prebiotic and Functional Bioproducts. Bioresource Technology. Vol. 219, pp. 311-318. DOI: 10.1016/j.biortech.2016.07.131

[53] Martinez, O., Sanchez, A., Font, X., and Barrena, R. (2017). Valorization of Sugarcane Bagasse and Sugar Beet Molasses Using Kluyveromyces marxianus for Producing Value-Added Aroma Compounds Via Solid-State Fermentation. Journal of Cleaner Production. Vol. 158, pp. 8-17. DOI: 10.1016/j.jclepro.2017.04.155

[54] Wechgama, K., Laopaiboon, L., and Laopaiboon, P. (2017). Enhancement of Batch Butanol Production from Sugarcane Molasses Using Nitrogen Supplementation Integrated with Gas Stripping for Product Recovery. Industrial Crops and Products. Vol. 95, pp. 216-226. DOI: 10.1016/j.indcrop.2016.10.012

[55] Glinwong, C., Lertsriwong, S., and Chulalaksananukul, W. (2017). Hydrogen Producer Isolated from Agricultural Wastewater and Molasses. Energy Procedia. Vol. 138, pp. 140-144. DOI: 10.1016/j.egypro.2017.10.081

[56] Abd-Alla, M. H., Bagy, M. M. K., Morsy, F. M., and Hassan, E. A. (2017). Enhancement of Biodiesel, Hydrogen and Methane Generation from Molasses by Cunninghamella echinulata and Anaerobic Bacteria Through Sequential Three-Stage Fermentation. Energy. Vol. 78, pp. 543-554. DOI: 10.1016/j.energy.2014.10.041

[57] Guan, Y., Tang, Q., Fu, X., Yu, S., Wu, S., and Chen, M. (2014). Preparation of Antioxidants from Sugarcane Molasses. Food Chemistry. Vol. 152, pp. 552-557. DOI: 10.1016/j.foodchem.2013.12.016

[58] Gomes, G. R., Rampon, D. S., and Ramos, L. P. (2017). Production of 5-(hydroxymethyl)-furfural from Water-Soluble Carbohydrates and Sugarcane Molasses. Applied Catalysis A: General. Vol. 545, pp. 127-133. DOI: 10.1016/j.apcata.2017.07.049

[59] Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B., and Koren Z. C. (2013). Production, Characterization and Methane Storage Potential of KOH-Activated Carbon from Sugarcane Molasses. Industrial Crops and Products. Vol. 47, pp. 153-159. DOI: 10.1016/j.indcrop.2013.03.004

[60] Alvarez, E. D., Laffi ta, Y. M., Montoro, L. A., Mohallem, N. D. S., Cabrera, H., Pérez, G. M., Frutis, M. A., and Cappe, E. P. (2015). Electrical, Thermal and Electrochemical Properties of Disordered Carbon Prepared from Palygorskite and Cane Molasses. Journal of Solid State Chemistry. Vol. 246, pp. 404-411. DOI: 10.1016/j.jssc.2016.09.024

[61] Li, H., Jiang, Z., Yang, X., Yu, L., Zhang, G., and Wu, J. (2015). Sustainable Resource Opportunity for Cane Molasses: use of Cane Molasses as a Grinding Aid in the Production of Portland cement. Journal of Cleaner Production. Vol. 93, pp. 56-64. DOI: 10.1016/j.jclepro.2015.01.027

[62] Saowapark, T., Plao-le, S., Chaichana, E., and Jaturapiree, A. (2017). Role of Eco-Friendly Molasses Carbon Powder as a Filler in Natural Rubber Vulcanizates. Materials Today: Proceedings. Vol. 4, Issue 5, pp. 6450-6457. DOI: 10.1016/j.matpr.2017.06.152

[63] Osman, N. B., Shamsuddin, N., and Uemura, Y. (2016). Activated Carbon of Oil Palm Empty Fruit Bunch (EFB): Core and shaggy. Procedia Engineering. Vol. 148, pp. 758-764. DOI: 10.1016/j.proeng.2016.06.610

[64] Chiew, Y. L. and Cheong, K. Y. (2012). Growth of SiC Nanowires Using Oil Palm Empty Fruit Bunch Fibres Infiltrated with Tetraethyl Orthosilicate. Physica E: Low-Dimensional Systems and Nanostructures. Vol. 44, Issue 10, pp. 2041-2049. DOI: 10.1016/j.physe.2012.06.008

[65] Musa, H., Han, P. C., Kasim, F. H. and Gopinath, S. C. B. (2017). Turning Oil Palm Empty Fruit Bunch Waste Into Substrate for Optimal Lipase Secretion on Solid State Fermentation by Trichoderma Strains. Process Biochemistry. Vol. 63, pp. 35-41. DOI: 10.1016/j.procbio.2017.09.002

[66] Akhtar, J. and Idris, A. (2017). Oil Palm Empty Fruit Bunches a Promising Substrate for Succinic Acid Production Via Simultaneous Saccharification and Fermentation. Renewable Energy. Vol. 114, Part B, pp. 917-923. DOI: 10.1016/j.renene.2017.07.113

[67] Ahmad, F. B., Zhang, Z., Doherty, W. O. S., Te’o, V. S. J., and O’Hara, I. M. (2017). Improved Microbial Oil Production from Oil Palm Empty Fruit Bunch by Mucor plumbeus. Fuel. Vol. 194, pp. 180-187. DOI: 10.1016/j.fuel.2017.01.013

[68] Zhang, Y., Sun, W., Wang, H., and Geng, A. (2013). Polyhydroxybutyrate Production from Oil Palm Empty Fruit Bunch Using Bacillus megaterium R11. Bioresource Technology. Vol. 147, pp. 307-314. DOI: 10.1016/j.biortech.2013.08.029

[69] Duangwang, S. and Sangwichien, C. (2015). Utilization of Oil Palm Empty Fruit Bunch Hydrolysate for Ethanol Production by Baker’s Yeast and Loog-Pang. Energy Procedia. Vol. 79, pp. 157-162. DOI: 10.1016/j.egypro.2015.11.455

[70] Palamae, S., Dechatiwongse, P., Choorit, W., Chisti, Y., and Prasertsan, P. (2017). Cellulose and Hemicellulose Recovery from Oil Palm Empty Fruit Bunch (EFB) Fibers and Production of Sugars from the Fibers. Carbohydrate Polymers. Vol. 155, pp. 491-497. DOI: 10.1016/j.carbpol.2016.09.004

[71] Or, K. H., Putra, A., and Selamat, M. Z. (2017). Oil Palm Empty Fruit Bunch Fibres as Sustainable Acoustic Absorber. Applied Acoustics. Vol. 119, pp. 9-16. DOI: 10.1016/j.apacoust.2016.12.002

[72] Saba, N., Jawaid, M., Paridah, M. T., and Alothman, O. (2017). Physical, Structural and Thermomechanical Properties of Nano Oil Palm Empty Fruit Bunch Filler Based Epoxy Nanocomposites. Industrial Crops & Products. Vol. 108. pp. 840-843. DOI: 10.1016/j.indcrop.2017.07.048

[73] Rahmi, Lelifajri, Julinawati, and Shabrina. (2017). Preparation of Chitosan Composite Film Reinforced with Cellulose Isolated from Oil Palm Empty Fruit Bunch and Application in Cadmium Ions Removal from Aqueous Solutions. Carbohydrate Polymers. Vol. 170, pp. 226-233. DOI: 10.1016/j.carbpol.2017.04.084

[74] Abdullah, M. A., Nazir, M. S., Raza, M. R., Wahjoedi, B. A., and Yussof, A. W. (2016). Autoclave and Ultra-Sonication Treatments of Oil Palm Empty Fruit Bunch Fibers for Cellulose Extraction and Its Polypropylene Composite Properties. Journal of Cleaner Production. Vol. 126, pp. 686-697. DOI: 10.1016/j.jclepro.2016.03.107

[75] Azrina, Z. A. Z., Beg, M. D. H., Rosli, M. Y., Ramli, R., Junadi, N., and Alam, A. K. M. M. (2017). Spherical Nanocrystalline Cellulose (NCC) from Oil Palm Empty Fruitbunch Pulp Via Ultrasound Assisted Hydrolysis. Carbohydrate Polymers. Vol. 162, pp. 115-120. DOI: 10.1016/j.carbpol.2017.01.035

[76] Daud, W. R. W. and Djuned, F. M. (2015). Cellulose Acetate from Oil Palm Empty Fruit Bunch Via a One Step Heterogeneous Acetylation. Carbohydrate Polymers. Vol. 132, pp. 252-260. DOI: 10.1016/j.carbpol.2015.06.011

[77] Mohtar, S. S., Busu, T. N. Z. T. M., Noor, A. M. M. N., Shaari, N., and Mat, H. (2017). An Ionic Liquid Treatment and Fractionation of Cellulose, Hemicellulose and Lignin from Oil Palm Empty Fruit Bunch. Carbohydrate Polymers. Vol. 166, pp. 291-299. DOI: 10.1016/j.carbpol.2017.02.102

[78] Tiong, Y. W., Yap, C. L., Gan, S., and Yap, W. S. P. (2017). One-Pot Conversion of Oil Palm Empty Fruit Bunch and Mesocarp Fiber Biomass to Levulinic Acid and Upgrading to Ethyl Levulinate Via Indium Trichloride-Lonic Liquids. Journal of Cleaner Production. Vol. 168, pp. 1251-1261. DOI: 10.1016/j.jclepro.2017.09.050

[79] Lee, H. -S., Lee, H., Ha, J. -M., Kim, J., and Suh, D. J. (2015). Production of Aromatic Compounds from Oil Palm Empty Fruit Bunchesby Hydro- and Solvothermolysis. Industrial Crops and Products. Vol. 76, pp. 104-111. DOI: 10.1016/j.indcrop.2015.05.083

[80] Koriakin, A., Moon, S., Kim, D. -W., and Lee, C. -H. (2017). Liquefaction of Oil Palm Empty Fruit Bunch Using Sub- and Supercritical Tetralin, n-dodecane, and Their Mixture. Fuel. Vol. 208, pp. 184-192. DOI: 10.1016/j.fuel.2017.07.010

[81] Rasmussen, H., Mogensen, K. H., Jeppesen, M. D., Sorensen, H. R., and Meyer, A. S. (2016). 4-Hydroxybenzoic acid from hydrothermal pretreatment of oil palm empty fruit bunches - Its origin and influence on biomass conversion. Biomass and Bioenergy. Vol. 93, pp. 209-216

[82] Ahmad, N., Ibrahim, N., Ali, U. F. M., Yusuf, S. Y., and Ridwan, F. M. (2016). Carbon-Supported CuO Catalyst Prepared from Oil Palm Empty Fruit Bunch (EFB) for Low-Temperature NO removal. Procedia Engineering. Vol. 148, pp. 823-829. DOI: 10.1016/j.proeng.2016.06.623

[83] Ismail, K., Yarmo, M. A. Taufi q-Yap, Y. H., and Ahmad, A. (2012). The Effect of Particle Size of CaO and MgO as Catalysts for Gasification of Oil Palm Empty Fruit Bunch to Produce Hydrogen. International Journal of Hydrogen Energy. Vol. 37, pp. 3639-3644. DOI: 10.1016/j.ijhydene.2011.05.100

[84] Abdullah, Sianipar, R. N. R., Ariyani, D., and Nata, I. F. (2017). Conversion of Palm Oil Sludge to Biodiesel Using Alum and KOH as Catalysts. Sustainable Environment
Research. Vol. 27, Issue 6, pp. 291-295. DOI: 10.1016/j.serj.2017.07.002

[85] Nasaruddin, R. R., Alam, M. Z., and Jami, M. S. (2014). Evaluation of Solvent System for the Enzymatic Synthesis of Ethanol-Based Biodiesel from Sludge Palm Oil (SPO). Bioresource Technology. Vol. 154, pp. 155-161. DOI: 10.1016/j.biortech.2013.11.095

[86] Thangalazhy-Gopakumar, S., Al-Nadheri, W. M. A., Jegarajan, D., Sahu, J. N., Mubarak, N. M., and Nizamuddin, S. (2015). Utilization of Palm Oil Sludge Through Pyrolysis for Bio-Oil and Bio-Char Production. Bioresource Technology. Vol. 178, pp. 65-69. DOI: 10.1016/j.biortech.2014.09.068

[87] Lee, X. J., Lee, L. Y., Hiew, B. Y. Z., Gan, S., Thangalazhy-Gopakumar, S., and Ng, H. K. (2017). Multistage Optimizations of Slow Pyrolysis Synthesis of Biochar from Palm Oil Sludge for Adsorption of Lead. Bioresource Technology. Vol. 245, Part A, pp. 944-953. DOI: 10.1016/j.biortech.2017.08.175

[88] Nawawi, W. M. F. W., Jamal, P., and Alam, M. Z. (2010). Utilization of Sludge Palm Oil as a Novel Substrate for Biosurfactant Production. Bioresource Technology. Vol. 101, Issue 23, pp. 9241-9247. DOI: 10.1016/j.biortech.2010.07.024

[89] Khankhaje, E., Salim, M. R., Mirza, J., Salmiati, Hussin, M. W., Khan, R., and Rafieizonooz, M. (2017). Properties of Quiet Pervious Concrete Containing Oil Palm Kernel Shell and Cockleshell. Applied Acoustics. Vol. 122, pp. 113-120. DOI: 10.1016/j.apacoust.2017.02.014

[90] Gibigaye, M., Godonou, G. F., Katte, R., and Degan, G. (2017). Structured Mixture Proportioning for Oil Palm Kernel Shell Concrete. Case Studies in Construction Materials. Vol. 6, pp. 219-224. DOI: 10.1016/j.cscm.2017.04.004

[91] Bediako, M., Gawu, S. K., Adjaottor, A. A., Ankrah, J. S., and Atiemo, E. (2016). Analysis of Co-Fired Clay and Palm Kernel Shells as a Cementitious Material in Ghana. Case Studies in Construction Materials. Vol. 5, pp. 46-52. DOI: 10.1016/j.cscm.2016.06.001

[92] Daud, S. Ismail, H. and Bakar, A. A. (2016). The Effect of 3-aminopropyltrimethyoxysilane (AMEO) as a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder Composites. Procedia Chemistry. Vol. 19, pp. 327-334. DOI: 10.1016/j.proche.2016.03.019

[93] Rashidi, N. A. and Yusap, S. (2017). Potential of Palm Kernel Shell as Activated Carbon Precursors Through Single Stage Activation Technique for Carbon Dioxide Adsorption. Journal of Cleaner Production. Vol. 168, pp. 474-486. DOI: 10.1016/j.jclepro.2017.09.045

[94] Zainal, N. H., Aziz, A. A., Idris, J., Mamat, R., Hassan, M. A., Bahrin, E. K. and Abd-Aziz, S. (2017). Microwave-Assisted Pre-Carbonisation of Palm Kernel Shell Produced Charcoal with High Heating Value and Low Gaseous Emission. Journal of Cleaner Production. Vol. 142, pp. 2945-2949. DOI: 10.1016/j.jclepro.2016.10.176

[95] Karri, R. R. and Sahu, J. N. (2018). Modeling and Optimization by Particle Swarm Embedded Neural Network for Adsorption of Zinc(II) by Palm Kernel Shell Based
Activated Carbon from Aqueous Environment. Journal of Environmental Management. Vol. 206, pp. 178-191. DOI: 10.1016/j.jenvman.2017.10.026

[96] Hussain, M., Tufa, L. D., Azlan, R. N. A. R., Yusup, S. and Zabiri, H. (2016). Steady State Simulation Studies of Gasification System Using Palm Kernel Shell. Procedia Engineering. Vol. 148, pp. 1015-1021. DOI: 10.1016/j.proeng.2016.06.523

[97] Asadullah, M., Rasid, N. S. A., Kadir, S. A. S. A. and Azdarpour, A. (2013). Production and Detailed Characterization of Bio-Oil from Fast Pyrolysis of Palm Kernel Shell. Biomass and Bioenergy. Vol. 59, pp. 316-324. DOI: 10.1016/j.biombioe.2013.08.037

[98] Bazargan, A., Kostic, M. D., Stamenkovic, O. S., Veljkovic, V. B., and McKay, G. (2015). A Calcium Oxide-Based Catalyst Derived from Palm Kernel Shell Gasification Residues for Biodiesel Production. Fuel. Vol. 150, pp. 519-525. DOI: 10.1016/j.fuel.2015.02.046

[99] Khanday, W. A., Kabir, G. and Hameed, B. H. (2016). Catalytic Pyrolysis of Oil Palm Mesocarp Fibre on a Zeolite Derived from Low-Cost Oil Palm Ash. Energy Conversion and Management. Vol. 127, pp. 265-272. DOI: 10.1016/j.enconman.2016.08.093

[100] Kabir, G., Din, A. T. M. and Hameed, B. H. (2017). Pyrolysis of Oil Palm Mesocarp Fiber and Palm Frond in a Slow-Heating Fixed-Bed Reactor: A Comparative Study. Bioresource Technology. Vol. 241, pp. 563-572. DOI: 10.1016/j.biortech.2017.05.180

[101] de Campos, A., de Sena Neto, A. R., Rodrigues, V. B., Luchesi, B. R., Moreira, F. K. V., Correa, A. C., Mattoso, L. H. C., and Marconcini, J. M. (2017). Bionanocomposites Produced from Cassava Starch and Oil Palm Mesocarp Cellulose Nanowhiskers. Carbohydrate Polymers. Vol. 175, pp. 330-336. DOI: 10.1016/j.carbpol.2017.07.080

[102] Zakaria, M. R., Hirata, S., and Hassan, M. A. (2014). Combined Pretreatment Using Alkaline Hydrothermal and Ball Milling to Enhance Enzymatic Hydrolysis of Oil Palm Mesocarp Fiber. Bioresource Technology. Vol. 169, pp. 236-243. DOI: 10.1016/j.biortech.2014.06.095

[103] YuSoff , M. Z. M., Akita, H., Hassan, M. A., Fujimoto, S., Yoshida, M., Nakashima, N., and Hoshino, T. (2017). Production of Acetoin from Hydrothermally Pretreated Oil Mesocarp Fiber Using Metabolically Engineered Escherichia coli in a Bioreactor System. Bioresource Technology. Vol. 245, Part A, pp. 1040-1048. DOI: 10.1016/j.biortech.2017.08.131

[104] Zakaria, M. R., Norrrahim, M. N. F., Hirata, S., and Hassan, M. A. (2015). Hydrothermal and Wet Disk Milling Pretreatment for High Conversion of Biosugars from Oil Palm Mesocarp Fiber. Bioresource Technology. Vol. 181, pp. 263-269. DOI: 10.1016/j.biortech.2015.01.072

[105] Saidu, M., Yuzir, A., Salim, M. R., Salmiati, Azman, S., and Abdullah, N. (2014). Biological Pre-Treated Oil Palm Mesocarp Fibre with Cattle Manure for Biogas Production by Anaerobic Digestion During Acclimatization Phase. International Biodeterioration & Biodegradation. Vol. 95, Part A, pp. 189-194. DOI: 10.1016/j.ibiod.2014.06.014

[106] Zulkefl i, S., Abdulmalek, E., and Rahman, M. B. A. (2017). Pretreatment of Oil Palm Trunk in Deep Eutectic Solvent and Optimization of Enzymatic Hydrolysis of Pretreated Oil Palm Trunk. Renewable Energy. Vol. 107, pp. 36-41. DOI: 10.1016/j.renene.2017.01.037

[107] Noparat, P., Prasertsan, P., O-Thong, S., and Pan, X. (2017). Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose for Enzymatic Hydrolysis of Oil Palm Trunk. Energy Procedia. Vol. 138, pp. 1122-1127. DOI: 10.1016/j.egypro.2017.10.209

[108] Sitthikitpanya, S., Reungsang, A., Prasertsan, P., and Khanal, S. K. (2017). Two-Stage Thermophilic Bio-Hydrogen and Methane Production from Oil Palm Trunk Hydrolysate Using Thermoanaerobacterium thermosaccharolyticum KKU19. International Journal of Hydrogen Energy. Vol. 42, Issue 47, pp. 28222-28232. DOI: 10.1016/j.ijhydene.2017.09.136

[109] Noparat, P., Prasertsan, P., O-Thong, S., and Pan, X. (2015). Dilute Acid Pretreatment of Oil Palm Trunk Biomass at High Temperature for Enzymatic Hydrolysis. Energy Procedia. Vol. 79, pp. 924-929. DOI: 10.1016/j.egypro.2015.11.588

[110] Eom, I. -Y., Oh, Y. -H., Park, S. J., Lee, S. -H., and Yu, J. -H. (2015). Fermentative L-Lactic Acid Production from Pretreated whole Slurry of Oil Palm Trunk Treated by Hydrothermolysis and Subsequent Enzymatic Hydrolysis. Bioresource Technology. Vol. 185, pp. 143-149. DOI: 10.1016/j.biortech.2015.02.060

[111] Nipattummakul, N., Ahmed, I. I., Kerdsuwan, S., and Gupta, A. K. (2012). Steam Gasification of Oil Palm trunk Waste for Clean Syngas Production. Applied Energy. Vol. 92, pp. 778-782. DOI: 10.1016/j.apenergy.2011.08.026

[112] Lamaming, J., Hashim, R., Sulaiman, O., Leh, C. P., Sugimoto, T., and Nordin, N. A. (2015). Cellulose Nanocrystals Isolated from Oil Palm Trunk. Carbohydrate Polymers. Vol. 127. pp. 202-208. DOI: 10.1016/j.carbpol.2015.03.043

[113] Lamaming, J., Hashim, R., Leh, C. P., and Sulaiman, O. (2017). Properties of Cellulose Nanocrystals from Oil Palm Trunk Isolated by Total Chlorine Free Method. Carbohydrate Polymers. Vol. 156. pp. 409-416. DOI: 10.1016/j.carbpol.2016.09.053

[114] Jumhuri, N., Hashim, R., Sulaiman, O., Nadhari, W. N. A. W., Salleh, K. M., Khalid, I., Saharudin, N. Z., and Razali, M. Z. (2014). Effect of Treated Particles on the Properties of Particleboard Made from Oil Palm Trunk. Materials and Design. Vol. 64, pp. 769-774. DOI: 10.1016/j.matdes.2014.08.053

[115] Selamat, M. E., Sulaiman, O., Hashim, R., Hiziroglu, S., Nadhari, W. N. A. W., Sulaiman, N. S. and Razali, M. Z. (2014). Measurement of Some Particleboard Properties Bonded with Modified Carboxymethyl Starch of Oil Palm Trunk. Measurement. Vol. 53, pp. 251-259

[116] Tay, P. W., H’ng, P. S., Chin, K. L., Wong, L. J., and Luqman, A. C. (2013). Effects of Steeping Variables and Substrate Mesh Size on Starch Yield Extracted from Oil Palm Trunk. Industrial Crops and Products. Vol. 44, pp. 240-245. DOI: 10.1016/j.measurement.2014.04.001

[117] Ezebor, F., Khairuddean, M. Abdullah, A. Z., and Boey, P. L. (2014). Oil Palm Trunk and Sugarcane Bagasse Derived Heterogeneous Acid Catalysts for Production of Fatty Acid Methyl Esters. Energy. Vol. 70, pp. 493-503. DOI: 10.1016/j.energy.2014.04.024