Diversity and Distribution of Duckweed in Kasetsart University, Kamphaeng Saen Campus
Main Article Content
Abstract
Aquatic duckweed plants are commonly found in natural freshwater habitats with clear and still water, particularly in warm climates with high sunlight exposure. They grow in clusters, floating on the water surface, and may coexist with other aquatic plants. Duckweeds are characterized by rapid growth and wide dispersal, and their development is influenced by several environmental factors, including nutrient availability, pH, and temperature. Ecologically, duckweeds provide multiple benefits, such as wastewater treatment, animal feed, and potential sources of biofuel. Kasetsart University, Kamphaeng Saen Campus is surrounded by canals and also contains water bodies within the university area. A previous observation found many duckweeds spreading on the water. Therefore, this study aims to record duckweed species and their distribution in Kasetsart University, Kamphaeng Saen Campus. The study focused on the distribution of three genera of duckweeds, namely Spirodela, Lemna, and Wolffia, to establish
a baseline database on their distribution. Field sampling was conducted at five sites during the peak growth period of duckweeds. For each sample, morphological characteristics, species identification, sampling location, and photographic records were documented, followed by an analysis of distribution patterns. The results indicated that Lemna and Wolffia were present at all sampling sites, whereas Spirodela was detected only at certain locations. This variation may be attributed to environmental conditions, habitat diversity, and waterbody size, which influence the occurrence of particular genera. These findings can support further applications of duckweeds in ecological and economic contexts, as well as their potential use as bioindicators.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- The original content that appears in this journal is the responsibility of the author excluding any typographical errors.
- The copyright of manuscripts that published in PKRU SciTech Journal is owned by PKRU SciTech Journal.
References
(1) ประดินันท์ เอี่ยมสะอาด. (2563). การศึกษาศักยภาพของชีวมวลแหน Lemna minor L. ในการผลิตพลังงานเชื้อเพลิงชีวภาพ. วารสารวิชาการเทคโนโลยีอุตสาหกรรม, 16(3), 16–27.
(2) สลิน ชั้นโรจน์. (2560). โครงการการพัฒนาแหนเพื่อเป็นพืชน้ำต้นแบบในการวิจัยพื้นฐานและการนำไปประยุกต์ใช้ทางเทคโนโลยีชีวภาพ. รายงานการวิจัย. ภาควิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา.
(3) Appenroth, K. J., Borisjuk, N., & Lam, E. (2013). Telling duckweed apart: Genotyping technologies for the Lemnaceae. Chinese Journal of Applied Environmental Biology, 19(1), 1–10.
(4) Popa, R., Moga, I. C., Rissdorfer, M., Ilis, M. L., Petrescu, G., Craciun, N., Matache, M., Covaliu, M., Cristina, I., & Stoian, G. (2017). Duckweed (Lemnaceae) utilization for freshwater conservation (management) in RAS. International Journal of Conservation Science, 8(4), 715–722.
(5) Sree, K. S., Bog, M., & Appenroth, K. J. (2017). Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emirates Journal of Food and Agriculture, 28(5), 291–302.
(6) Pasaribu, B., Iskandar, R., Rostika, R., Zallesa, S., Andriani, Y., Apriliani, I. M., Mahendra, M. R. A., Kristiadhi, F., Zidni, I., Hutagalung, S., & Khan, A. M. A. (2025). Morphological characteristics of turion formation and development in Spirodela polyrhiza. Egyptian Journal of Aquatic Biology & Fisheries, 29(4), 1677–1689.
(7) Hassan, M., & Edwards, P. (1992). Evaluation of duckweed (Lemna perpusilla and Spirodela polyrrhiza) as feed for Nile tilapia (Oreochromis niloticus). Aquaculture, 104, 315–326.
(8) อัจกลับ นนทโส, เพ็ญพรรณ ศรีสกุลเตียว, สมสมร แก้วบริสุทธิ์, และกมล เลิศรัตน์. (2560). การเพาะเลี้ยงแหนเป็ดด้วยน้ำหมักขยะอินทรีย์ครัวเรือน. วารสารแก่นเกษตร, 45(1), 71–78.
(9) Zhao, Z., Huijuan, S., Yang, L., Hai, Z., Haifeng, S., Maolin, W., & Yun, Z. (2014). The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Bioresource Technology, 167, 383–389.
(10) Lili, F., Meng, H., Bingying, H., Xuepiao, S., Sowjanya, S. K., Klaus, J. A., & Jaiming, Z. (2017). Flower induction, microscope-aided cross-pollination, and seed production in the duckweed Lemna gibba with discovery of a male-sterile clone. Scientific Reports, 7(1), 1–13.
(11) Weather Underground. (2025). Kamphaeng Saen, Nakhon Pathom, Thailand weather history. (ออนไลน์), สืบค้นจาก https://www.wunderground.com/history/daily/th/kamphaengsaen/VTBK/date/2021-6-30
(10 พฤศจิกายน 2568).
(12) Kleb, H., & Wilson, S. (1999). Scale of heterogeneity in prairie and forest. Aspen Bibliography, 77, 370–376.
(13) Sørensen, T., Sørensen, T., Biering-Sørensen, T., Sørensen, T., & Sørensen, J. T. (1948). A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter/Kongelige Danske Videnskabernes Selskab, 5, 1–34.
(14) Dong, A., Changsheng, L., Yong, Z., Yongrui, W., & Wenqin, W. (2018). Genomes and transcriptomes of duckweed. Frontiers in Chemistry, 6, 1–11.
(15) Jaiprasert, A. (2018). Development of duckweed transformation technique for biological application. Doctoral dissertation. Chonburi: Burapha University.
(16) Intarachernsiri, W. (2010). Utilization of common duckweed (Lemna minor L.) and giant duckweed (Spirodela polyrhiza (L.) Schleid.) as a bioindicator under hypereutrophic condition. Master of Science Thesis. Bangkok: Mahidol University.
(17) Ziegler, P., Appenroth, K. J., & Sree, K. S. (2023). Survival strategies of duckweeds, the world’s smallest angiosperms. Plants, 12(11), 2215.