Comparative Analysis of Total Heavy Metal Removal in Influent and Effluent of the Oxidation Pond System at Ayutthaya Municipal Landfill

Main Article Content

Somkid Tangkan
Sirapassorn Phanthasa

Abstract

The study analyzed and compared total heavy metal contamination (THMs)—arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn)—in influent and effluent during dry and wet seasons. THMs analysis utilized acid digestion, with determinations conducted according to USEPA methods 3005A and 6010D. Results indicated that THMs levels were below USEPA and Thai wastewater discharge standards in both seasons. The metals with the highest treatment efficiencies were As (dry season: Inf=0.07 ppm, Eff=BDL; wet season: Inf=0.065 ppm, Eff=BDL), Cd (dry season: Inf=0.005 ppm, Eff=BDL; wet season: Inf=0.005 ppm, Eff=BDL), and Cr (dry season: Inf=0.065 ppm, Eff=BDL; wet season: Inf=0.01 ppm, Eff=BDL), achieving 100% removal efficiency. In contrast, Ni showed the lowest efficiency, with removal rates of 28% (dry season: Inf=0.125 ppm, Eff=0.09 ppm) and 58.27% (wet season: Inf=0.115 ppm, Eff=0.055 ppm). Statistical analysis revealed significant differences (P<0.05) in contamination levels between influent and effluent, particularly for Cr, Mn, and Ni during the dry season, and Cr, Mn, Ni, and Pb during the wet season. Additionally, most influent metals, except Cu and Fe, showed significant statistical correlations (P<0.05). The findings highlight areas for improving heavy metal treatment in leachate and monitoring surrounding environmental conditions.

Article Details

How to Cite
Tangkan, S., & Phanthasa, S. (2024). Comparative Analysis of Total Heavy Metal Removal in Influent and Effluent of the Oxidation Pond System at Ayutthaya Municipal Landfill. PKRU SciTech Journal, 8(2), 39–52. retrieved from https://ph01.tci-thaijo.org/index.php/pkruscitech/article/view/257515
Section
Research Articles

References

James, D., Julius, C., Ahiekpor, S. N., Osei-Wusu, A., & Herbert, F. A. (2023). Municipal solid waste generation trend and bioenergy recovery potential: a review. Energies, 16, 7736.

Senbet, E. D., & Gemechu, S. O. (2023). Towards integrated, and sustainable municipal solid waste management system in Shashemane city administration, Ethiopia.

Heliyon, 9(11), 1–15.

Imran, A., Shreeshivadasan, C., Norazli, O., & Roslina, M. (2018). A review of municipal solid waste (MSW) landfill management and treatment of leachate. International Journal of Civil Engineering and Technology, 9(5), 336–348.

Forbes, R. M., Peter R. W., Marina, F., & Peter, H. (1995). Integrated solid waste management: a life cycle inventory. London: Black Academic & Professional.

Pollution Control Department. (2004). Sanitary Landfill. Bangkok: Pollution Control Department.

Banerjee, G., & Sarker, S. (1997). The role of salvinia rotundifolia in scavenging aquatic Pb(II) pollution: a case study. Bioprocess Engineering, 17, 295–300.

องค์การบริหารส่วนจังหวัดพระนครศรีอยุธยา. (2566). สถิติการให้บริการกำจัดขยะ ณ ศูนย์จัดการขยะต้นแบบจังหวัดพระนครศรีอยุธยา. [ออนไลน์], สืบค้นจาก http://aypao.go.th/ita/datas/file /ita-2567/ita-012-11042567-003.pdf (17 สิงหาคม 2567).

Alam, P., Khan, A. H., Islam, R., Sabi, E., Khan, N. A., & Zargar, T. I. (2024). Identification of prevalent leachate percolation of municipal solid waste landfill: a case study in India. Scientific Reports, 14(8910), 1–15.

European Environment Agency. (2024). Leachate pollution from landfills (Signal). [ออนไลน์], สืบค้นจาก https://www.eea.europa.eu/en/european-zero-pollution-dashboards (16 เมษายน 2567).

U.S. Department of health and human services. (2007). Toxicological profile for arsenic. [ออนไลน์], สืบค้นจาก https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf

(12 กรกฎาคม 2567).

Rahman, M. A., Hasegawa, H., Rahman, M. M., Islam, M. N., Miah, M. A. M., & Tasmen, A. (2007). Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere, 67(6), 1072–1079.

Tytła, M. (2019). Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland: case study. IJERPH, 16, 2430.

NSW EPA. (2016). Environmental Guidelines Solid waste landfills (2nd ed). Sydney: NSW EPA.

Beinabaj, S. M. H., Heydariyan, H. M., Aleii, A., & Hosseinzadeh, A. (2023). Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon, 9, 13017.

United Kingdom Environment Agency. (2014). Guidance on monitoring of landfill leachate, groundwater and surface water. Bristol: United Kingdom Environment Agency.

U.S. Environmental Protection Agency. (2000). Collecting water-quality samples for dissolved metals-in-water. Washington: U.S. Environmental Protection Agency.

U.S. Environmental Protection Agency. (1992). METHOD 3005A: Acid digestion of waters for total recoverable or dissolved metals for analysis by FLAA or ICP spectroscopy. Washington: U.S. Environmental Protection Agency.

U.S. Environmental Protection Agency. (2018). METHOD 6010D: Inductively coupled plasma-optical emission spectrometry. Washington: U.S. Environmental Protection Agency.

Abdullah, N. H., Kean, O. B., Hirmizi, N. M., Yusoff, N., Nurdiana, A. R., & Sabarudin, A. R. N. M. (2020). Method validation of heavy metals determination in traditional herbal tablet, capsule and liquid by graphite furnace atomic absorption spectrometer and flow injection for atomic spectroscopy hydride system. Asian journal of pharmacognosy, 4(3), 37–45.

Safo-Adu, G. (2020). Assessment of an oily wastewater treatment plant in nyankrom industrial area, ghana: physico-chemical quality of effluent water and treatment efficiency. European Journal of Pure and Applied Chemistry, 7(1), 1–13.

U.S. Environmental Protection Agency. (2004). Guidelines for Water Reuse. Washington: U.S. Environmental Protection Agency.

Industrial Estate Authority of Thailand. (2017). Announcement of the Industrial Estate Authority of Thailand no. 76/2560: standards for wastewater effluent discharge regulations by Industrial Estate Authority of Thailand. [ออนไลน์], สืบค้นจาก http://www.oic.go.th/FILEWEB/CABINFOCENTER6/DRAWER064/GENERAL/DATA0000/00000026.PDF (3 พฤษภาคม 2566).

Ministry of Natural Resources and Environment. (2022). Announcement of Ministry of Natural Resources and Environment: discharged leachate standard value by Ministry of Natural Resources and Environment. [ออนไลน์], สืบค้นจาก https://www.pcd.go.th/laws/26433 (3 พฤษภาคม 2566).

Mojeed, A. A., Abiodun, O. A., Martins, A. A., & Omobola, O. O. (2010). Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water Journal, 2020(12), 1–19.

Sankoh, A. A., Amara, J., Komba, T., Laar, C., Sesay, A., Derkyi, N. S., & Frazer-Williams, R. (2023). Seasonal assessment of heavy metal contamination of groundwater in two major dumpsites in Sierra Leone. Cogent engineering, 10(1), 2185955.

Kalčíková, G., Vávrová, M., Zagorc-Končan, J. & Žgajnar Gotvajn, A. (2011). Seasonal variations in municipal landfill leachate quality. Management of Environmental Quality, 22(5), 612–619.

Kieu, L. P. N., Yen, H. C., Ho, W. C., & Chih, C. C. (2020). Impacts of socioeconomic changes on municipal solid waste characteristics in Taiwan. Resources, Conservation & Recycling, 161, 104931.

กรมควบคุมมลพิษ. (2565). รายงานสถานการณ์ของเสียอันตรายจากชุมชน ปี พ.ศ. 2564. กรุงเทพ: กรมควบคุมมลพิษ

กรมควบคุมมลพิษ. (2566). รายงานสถานการณ์ของเสียอันตรายจากชุมชน ปี พ.ศ. 2565. กรุงเทพ: กรมควบคุมมลพิษ

Shumung, W., Guang, H., Xiao, W., & Qicheng, F. (2022). Wastewater treatment in mineral processing of non-ferrous metal resources: a review. Water, 14, 726.

Jacek, N., & Anna, R. (2010). The speciation and physico-chemical forms of metals

in surface waters and sediments. Chemical Speciation & Bioavailability, 22(1), 1–24.

David, M. A., Allen, P. D., & Paul, M. G. (1994). Removing Heavy Metals from Wastewater. Marryland: University of Marryland.

WHO. (2021). Nickel in drinking-water. Geneva: WHO.