Recommender System Using Collaborative Filtering A Case Study of Toyota Buzz Company Limited

Main Article Content

Warakorn Pradiskul
Paralee Maneerat
Nivet Chirawichitchai

Abstract

The objective of this research was to develop a recommender system by using collaborative filtering to analyze the users’ behavior. This system will provide suitable car model recommendations for the customer’s needs. The developed system will help customers to be satisfied with their products in a short time. The method was conducted by determining the relationship between the customer data and the car model list obtained from the previous car sales history dataset. This study focused on analyzing 44,079 sales transactions for 24 car models and 43,098 customers. These transactions were under the condition of complete car delivery to customers. The data were stored in the MySQL database. The user-based similarity algorithm along with the cosine similarity equation, which is a function in Python, were used to analyze customers with similar behavior. The developed system could be applied to recommend car models to meet customer needs in an accurate and efficient manner with a mean absolute error (MAE) of 0.97. In conclusion, the performance of the developed system was at a good level and it could be practically applied.

Article Details

How to Cite
Pradiskul, W., Maneerat, P., & Chirawichitchai, N. (2021). Recommender System Using Collaborative Filtering A Case Study of Toyota Buzz Company Limited. PKRU SciTech Journal, 5(1), 12–24. retrieved from https://ph01.tci-thaijo.org/index.php/pkruscitech/article/view/241580
Section
Research Articles

References

Debashis, D., Laxman, S., & Sujoy, D. (2017). A Survey on Recommendation System. International Journal of Computer Applications, 160, 6-10.

กิตติศักดิ์ อ่อนเอื้อน, สุนันฑา สดสี, และพยุง มีสัจ. (2560). การศึกษาวัดความคล้ายคลึงในกระบวนการกรองแบบร่วมมือบนพื้นฐานความจำสำหรับระบบแนะนำ. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยมหาสารคาม, 37, 259-272.

สมเพ็ชร จุลลาบุดดี. (2562). การสำรวจงานวิจัยระบบแนะนำ (ในประเทศไทย) พ.ศ. 2550-2560. วารสารสารสนเทศศาสตร์ สาขาสารสนเทศศาสตร์ คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยขอนแก่น, 29, 95-124.

Mathew, P., Kuriakose, B., & Hegde, V. (2016). Book Recommendation System through Content Based and Collaborative Filtering Method. International Conference on Data Mining and Advanced Computing.

นภวรรณ ดุษฎีเวทกุล. (2560). การปรับปรุงวิธีการกรองร่วมสำหรับระบบแนะนำด้วยข้อมูลความสัมพันธ์จากสื่อสังคมออนไลน์. วิทยานิพนธ์ ปริญญาวิทยาศาสตรมหาบัณฑิต. กรุงเทพฯ: มหาวิทยาลัยธรรมศาสตร์.

Bindhu, B. (2019). Collaborative Filtering - A Type of Recommendation System. [ออนไลน์], สืบค้นจาก https://medium.com/towards-artificial-intelligence/collaborative-filtering-type-of-recommendation-system-87bef33e701e.

Sridevi, M., Rao, R. R., & Rao, M. V. (2016). A Survey on Recommender System. International Journal of Computer Science and Information Security, 14, 265-272.

Erion, C., & Maurizio, M. (2017). Hybrid Recommender Systems: A Systematic Literature Review. Intelligent Data Analysis. 21, 1487-1524.

Uko, O., Eke, B. O., & Asagba, P. O. (2017). An Improved Online Book Recommender System using Collaborative Filtering Algorithm. International Journal of Computer Applications, 179, 41-48.

Ching, S., Deepti, G., & Unnathi, B. (2017). Movie Recommendation System Using Collaborative Filtering. IEEE International Conference on Software Engineering and Service Science (ICSESS), 11-15.

Parvatikar, S., & Joshi, B. (2015). Online Book Recommendation System by using Collaborative filtering and Association Mining. IEEE International Conference on Computational Intelligence and Computing Research.

Dilek, T., & Seda, K. (2012). Performance Comparison of Combined Collaborative Filtering Algorithms for Recommender Systems. IEEE International Conference on Computer Software and Applications Workshops, 284-289.

Sondur, S. D., Chigadani, A. P., & Nayak, S. (2016). Similarity Measures for Recommender Systems: A Comparative Study. International Journal for Scientific Research and Development, 2, 76-80.