การผลิตก๊าซไฮโดรเจนจากไบโอมีเทนอัดด้วยการเปลี่ยนรูปด้วยไอน้ำโดยใช้แพลเลเดียมบนตัวรองรับอะลูมินา (Pd/Al2O3) เป็นตัวเร่งปฏิกิริยา Production of Hydrogen Gas from Compressed Bio-methane Gas by Steam Reforming Process with Alumina-supported Palladium (Pd/Al2O
Main Article Content
Abstract
This research focused on the hydrogen production from compressed bio-methane gas (CBG) by steam reforming process with alumina-supported palladium (Pd/Al2O3) catalyst. The experiment was set up to study on the effects of temperature and flow rate of CBG in the reactor to the H2 conversion by catalytic steam reforming process. Upstream CBG had 81 % CH4 by mole and the experiment was set up to maintain molar ratio of the CH4 : steam at 1:2 with 0.5 g Pd/Al2O3 catalyst, input of the CBG flow rate was 0.1, 0.2 and 0.3 L/min at the temperatures of 700 ˚C, 800 ˚C and 900 ˚C, respectively. Afterwards, the product gas was analyzed by gas chromatography (GC) to measure mole fraction composition. The result showed that the maximum %mole of H2 was 69.31 % at a flow rate of CBG 0.1 L/min and a temperature of 900 ˚C.
Article Details
References
สถานการณ์พลังงานและการใช้พลังงานต่อสิ่งแวดล้อม.
คู่มือการสอนด้านพลังงาน. ศูนย์วิจัยเทคโนโลยีพลังงานเพื่อ
สิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่.
[ระบบออนไลน์],
แหล่งที่มา http://www.thailandenergyeducation.com
/handbook (15 กันยายน 2559)
ยุทธศาสตร์พลังงานไฮโดรเจนและเซลล์เชื้อเพลิง [ระบบออนไลน์],
แหล่งที่มา http://www4.dede.go.th/dede/index.
php?option=com_content&view=article&id=120%3A2010-05-06-10-52-51&catid=57%3A2010-04-06-09-13-01&Itemid=68&lang=th(15 กันยายน 2559)
Nisit Tantavichet, 2553. Water Electrolysis. Technology Energy Journal.Faculty of Science. Chulalongkorn University. February-March 2010, Vol.36 No.209.
ระบบผลิตก๊าซไบโอมีเทนอัด (CBG) [ระบบออนไลน์], แหล่งที่มา:
http://www.erdi.cmu.ac.th/index.php/services/view?pid=5 (15 กันยายน 2559).
Pimpornjai Chainaranon, 2558. Production of Hydrogen Gas from Bio-methane by Steam and CO2 Reforming. graduate school. Chiang Mai University.
Ratchaneekorn Wanchanthuek, 2554. Hydrogen Gas: The Expectation to Be a Promising Sustainable Energy Source. Burapha Science Journal.16 (2554) 1: 131-140.
Krairit Ninkuha, 2553. Development of hydrogen energy
from alternative energy sources using steam
reformation. Kasetsart Engineering Journal (Thailand).
(23): 30-38.
Apirat Laobuthee, 2554. Preparation of gadolinia- doped ceria from the metal complex decomposition method for use as catalysts in methane steam reforming reactions. Kasetsart Engineering Journal (Thailand). 76(24): 68-83
D.G. Avraam, T.I. Halkides, D.K. Liguras, O.A. Bereketidou and M.A. Goula, (2010). An experimental and theoretical approach for the biogas steam reforming reaction. International Journal of Hydrogen Energy 35: 9818-9827
Junde Xu, Wei Zhou, Zhaojing Li, Jihui Wang and Jianxin Ma, (2010). Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: Effect of operating conditions.
International Journal of Hydrogen Energy 35: 13013-13020
U. Izquierdo, V.L Barrio , J.F. Cambra, J.Requies, M.B. Guemez, P.L. Arias, G.Kolb, R.Zapf, A.M. Gutierrez, and J.R. Arraibi, (2012). Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. International Journal of Hydrogen Energy 37: 7026-7033
Chen Y.H. et al., Design procedure of an experimental
membrane enhanced methane steam reformer.
Journal of the Taiwan Institute of Chemical Engineers, 41, pp. 492-499.
Abdulwahab GIWA and Saidat Olanipekun GIWA.
Simulation Sensitivity Analysis and Optimization of Hydrogen Production by Steam Reforming of Methane Using Aspen Plus. International Journal of Engineering Research & Technology (IJERT), Vol.2, Issue 7, July-2013
Lucia Bollini Braga, Jose Luz Silveira, Marcio Evaristo da Silva, Celso
Eduardo Tuna, Einara Blanco Machin and Daniel Travieso Pedroso, (2013). Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis. Renewable and Sustainable Energy Reviews 28: 166-173