การวิจัยและพัฒนาเซลล์แสงอาทิตย์ด้วยโครงสร้างนาโน
Main Article Content
Abstract
โครงสร้างนาโนเป็นโครงสร้างที่ได้รับความสนใจในการนำมาประยุกต์ในสิ่งประดิษฐ์เซลล์แสงอาทิตย์ เนื่องจากโครงสร้างนาโนแสดงปรากฏการณ์ทางกายภาพแบบใหม่ ซึ่งแตกต่างกับเซลล์แสงอาทิตย์แบบดั้งเดิม การทำนายทางทฤษฏีบ่งบอกว่าประสิทธิภาพของเซลล์แสงอาทิตย์ที่ใช้โครงสร้างนาโนสามารถมีค่าเกินข้อจำกัดของ Shockley-Queisser และเกินประสิทธิภาพของเซลล์แสงอาทิตย์หลายรอยต่อ อย่างไรก็ตามในปัจจุบันประสิทธิภาพของเซลล์แสงอาทิตย์โครงสร้างนาโนที่สร้างได้จริงยังคงน้อยกว่าเซลล์แสงอาทิตย์ที่สร้างจากซิลิกอนและแกลเลียมอาร์เซไนด์ในยุคที่ 1 เพราะฉะนั้นการวิจัยและพัฒนาในสาขานี้จึงเป็นสิ่งจำเป็นอย่างมาก บทความปริทัศน์นี้ได้เริ่มต้นอธิบายถึงภาพรวมของวิวัฒนาการของเซลล์แสงอาทิตย์ตั้งแต่อดีตถึงปัจจุบัน ส่วนต่อมาเป็นการอธิบายพร้อมยกตัวอย่างเทคโนโลยีเซลล์แสงอาทิตย์โครงสร้างนาโนรูปแบบต่าง ๆ นอกจากนั้นได้อธิบายถึงปัจจัยที่มีผลต่อการพัฒนาเซลล์แสงอาทิตย์โครงสร้างนาโน โดยเจาะจงไปที่เซลล์แสงอาทิตย์ควอนตัมดอท และส่วนสุดท้ายได้ยกตัวอย่างการวิจัยและพัฒนาโครงสร้างนาโนสำหรับเซลล์แสงอาทิตย์ในประเทศไทย
Article Details
References
E. Topal, and S. Shafiee, “When will fossil fuel reserves be diminished?,” Energy Policy 37 (2009) 181-189.
Z. Abdin, M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, S. Mekhilef, and A. Wadi, “Solar energy harvesting with the application of nanotechnology,” Renewable and Sustainable Energy Reviews 26 (2013) 837-852.
บริษัท เทคตรอน จำกัด. ผลิตภัณฑ์แผงเซลล์แสงอาทิตย์. Available: http://www.techtron.co.th/Product_Solarmodule.htm
T. Nozawa, and Y. Arakawa, “Detailed balance limit of the efficiency of multilevel intermediate band solar cells,” Applied Physics Letters 98 (2011) 171108.
M. A. Green, “Third generation photovoltaics: advanced solar energy conversion,” Physics Today 57 (2004) 71-72.
W. Shockley, and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics 32 (1961) 510-519.
National Renewable Energy Laboratory (NREL). Research Cell Efficiency Record; 2014 [cited 20.11.14]. Available: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya, “Solar photovoltaic electricity: Current status and future prospects,” Solar Energy 85 (2011) 1580-1608.
A. A. Yaroshevsky, “Abundances of chemical elements in the earth’s crust,” Geochemistry International 44 (2006) 48-55.
V. V. Tyagi, N. A. A. Rahim, N. A. Rahim, A. Jeyraj, and L. Selvaraj, “Progress in solar PV technology: Research and achievement,” Renewable and Sustainable Energy Reviews 20 (2013) 443-461.
J. Zhao, A. Wang, and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar Energy Materials & Solar Cells 65 (2001) 429-435.
L. A. Dobrzanski, A. Drygata, M. Giedroc, and M. Macek, “Monocrystalline silicon solar cells applied in photovoltaic system,” Journal of Achievements in Materials and Manufacturing Engineering 53 (2012) 7-13.
Z. Abdin, M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, S. Mekhilef, and A. Wadi, “Solar energy harvesting with the application of nanotechnology,” Renewable and Sustainable Energy Reviews 26 (2013) 837-852.
K. Tanabe, K. Watanabe, and Y. Arakawa, “Flexible thin-film InAs/GaAs quantum dot solar cells,” Applied Physics Letter 100 (2012) 192102.
M. Wolf, “Limitations and possibilities for improvement of photovoltaic solar energy converters. Part I: Considerations for earth’s surface operation,” in Proc. 1960 The IRE Conf., pp. 1246-1263.
M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III-V solar cells: current status and future potential,” Solar Energy 79 (2005) 78-85.
M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” Journal of Materials Science: Materials in Electronics 18 (2007) S15-S19.
A. Shah, Practical Handbook of Photovoltaics: Chapter IC-1 Thin-Film Silicon Solar Cells. Elsevier Ltd, 2012, pp. 209-281.
M. C. Beard, J. M. Luther, O. E. Semonin, and A. J. Nozik, “Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors,” Accounts of Chemical Research 46 (2013) 1252-1260.
C. Weisbuch, and B. Vinter, Quantum Semiconductor Structure: Fundamental and Applications, 1st Edition. Academic Press, 1991.
N. E. Gorji, “A theoretical approach on the strain-induced dislocation effects in the quantum dot solar cells,” Solar Energy 86 (2012) 935-940.
S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cells,” Solar Energy Materials & Solar Cells 90 (2006) 2968-2974.
K. Laouthaiwattana, O. Tangmattajittakul, S. Suraprapapich, S. Thainoi, P. Changmuang, S. Kanjanachuchai, S. Ratanathamaphan, and S. Panyakeow, “Optimization of stacking high-density quantum dot molecules for photovoltaic effect,” Solar Energy Materials & Solar Cells 93 (2009) 746-749.
K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Applied Physics Letters 100 (2012) 193905.
L. L. Tobin, T. O’ Reilly, D. Zerulla, and J. T. Sheridan, “Characterising dye-senstised solar cells,” Optik 122 (2011) 1225-1230.
E. L. Wolf, Quantum Nanoelectronics: An introduction to electronic nanotechnology and quantum computing. Wiley-VCH, 2009.
P. Moriarty, “Nanostructured materials,” Reports on Progress in Physics 64 (2001) 297-381.
N. J. Ekins-Daukes, J. M. Barnes, K. W. J. Barnham, J. P. Connolly, M. Mazzer, J. C. Clark, R. Grey, G. Hill, M. A. Pate, and J. S. Roberts, “Strain and strain-balanced quantum well devices for high-efficiency tandem solar cells,” Solar Energy Materials & Solar Cells 68 (2001) 71-87.
T. Noda, L. M. Otto, M. Jo, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “GaAs/AlGaAs quantum wells with indirect-gap AlGaAs barriers for solar cell applications,” Applied Physics Letters 104 (2014) 122102.
W. D. Goodhue, “Using Molecular-Beam Epitaxy to Fabricate Quantum-Well Device,” The Lincoln Laboratory Journal 2 (1989) 183-205.
D. B. Bushnell, T. N. D. Tibbits, K. W. J. Barnham, J. P. Connolly, and M. Mazzer, “Effect of well number on the performance of quantum-well solar cells,” Journal of Applied Physics 97 (2005) 124908.
D. Alonso-Alvarez, T. Thomas, M. Fuhrer, N. P. Hylton, N. K. Ekins-Daukes, D. Lackner, S. P. Philipps, A. W. Bett, H. Sodabanlu, H. Fuji, K. Watanabe, M. Sugiyama, L. Nasi, and M. Campanini, “InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells,” Applied Physics Letters 105 (2014) 083124.
V. P. Kunets, C. S. Furrow, M. E. Ware, L. D. de Souza, M. Benamara, M. Mortazavi, and G. J. Salamo, “Band filling effects on temperature performance of intermediate band quantum wire solar cells,” Journal of Applied Physics 116 (2014) 083102.
S. Tarucha, D. G. Austing, T. Honda, R. V. D. Hage, and L. P. Kouwenhoven, “Atomic-Like Properties of Semiconductor Quantum Dots,” Japanese Journal of Applied Physics 36 (1997) 3917-3923.
D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Applied Physics Letters 96 (2010) 203507.
R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Applied Physics Letters 90 (2007) 173125.
X. Yang, K. Wang, Y. Gu, H. Ni, X. Wang, T. Yang, and Z. Wang, “Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping,” Solar Energy Materials & Solar Cells 113 (2013) 144-147.
K. A. Sablon, J. W. Little, K. A. Olver, Z. M. Wang, V. G. Dorogan, Y. I. Mazur, G. J. Salamo, and F. J. Towner, “Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells,” Journal of Applied Physics 108 (2010) 074305.
G. Hodes, “Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells,” The Journal of Physical Chemistry C 112 (2008) 17778-17787.
I. Hod, V. Gonzalez-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquet, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: Participation of quantum dot absorber in the recombination process,” The Journal of Physical Chemistry Letters 2 (2011) 3032-3035.
J. Tian, and G. Cao, “Semiconductor quantum dot-sensitized solar cells,” Nano Reviews 4 (2013) 1-8.
M. Kouhnavard, S. Ikeda, N. A. Ludin, N. B. Ahmad Khairudin, B. V. Ghaffari, M. A. Mat-Teridi, M. A. Ibrahim, S. Sepeai, and K. Sopian, “A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells,” Renewable and Sustainable Energy Reviews 37 (2014) 397-407.
H. J. Lee, J. Bang, J. Park, S. Kim, and S. Park, “Multilayered emiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: All prepared by successive ionic layer adsorption and reaction process,” Chemistry of Materials 22 (2010) 5636-5643.
H. Alexandar, M. T. Susanna, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nature Nanotechnology 7 (2012) 577-582.
C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321 (2008) 385-388.
G. V. Dubacheva, C. Liang, and D. M. Bassani, “Functional monolayers from carbon nanostructures – fullerenes, carbon nanotubes, and grapheme – as novel materials for solar energy conversion,” Coordination Chemistry Reviews 256 (2012) 2628-2639.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306 (2004) 666-669.
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320 (2008) 1308.
A. Iwan, and A. Chuchmala, “Perspectives of applied graphene: Polymer solar cells,” Progress in Polymer Science 37 (2012) 1805-1828.
S. J. Wang, Y. Geng, Q. Zheng, and J. Kim, “Fabrication of highly conducting and transparent grapheme films,” Carbon 48 (2010) 1815-1823.
B. Tripathi, P. Yadav, K. Pandey, P. Kanade, M. Kumar, and M. Kumar, “Investigating the role of graphene in the photovoltaic performance improvement of dye-sensitized solar cell,” Materials Science and Engineering B 190 (2014) 111-118.
X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon schottky junction solar cells,” Advanced Materials 22 (2010) 2743-2748.
E. T. Thostenson, Z. Ren, and T. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology 61 (2001) 1899-1912.
H. Zhu, J. Wei, K. Wang, and D. Wu, “Applications of carbon materials in photovoltaic solar cells,” Solar Energy Materials & Solar Cells 93 (2009) 1461-1470.
D. W. Zhang, X. D. Li, S. Chen, F. Tao, Z. Sun, X. J. Yin, and S. M. Huang, “Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar cells,” Journal of Solid State Electrochemistry 14 (2010) 1541-1546.
E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, “Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I-3) reduction in dye-sensitized solar cells,” Electrochemistry Communications 10 (2008) 1087-1089.
K. Lee, C. Hu, H. Chen, and K. Ho, “Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells,” Solar Energy Materials & Solar Cells 92 (2008) 1628-1633.
T. Y. Lee, P. S. Alegaonkar, and J. Yoo, “Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes,” Thin Solid Films 515 (2007) 5131-5135.
Wikipedia. Shockley-Queisser Limit [cited 5.12.14]. Available: http://en.wikipedia.org/wiki/Shockley%E2%80%93Queisser_limit
L. Cuadra, A. Marti, and A. Luque, “Present status of intermediate band solar cell research,” Thin Solid Films 451-452 (2004) 593-599.
A. Martí, L. Cuadra, and A. Luque, “Design constraints of the quantum-dot intermediate band solar cell,” Physica E 14 (2002) 150-157.
A. Martí, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. Cuadra, and A. Luque, “Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell,” Thin Solid Films 511-512 (2006) 638-644.
L. Sang, M. Liao, Q. Liang, M. Takeguchi, B. Dierre, B. Shen, T. Sekiguchi, Y. Koide, and M. Sumiya, “A multilevel intermediate-band solar cell by InGaN/GaN quantum dots with a strain-modulated structure,” Advanced Materials 26 (2014) 1414-1420.
T. Li, R. E. Bartolo, and M. Dagenais, “Challenges to the concept of an intermediate band in InAs/GaAs quantum dot solar cells,” Applied Physics Letters 103 (2013) 141113.
A. S. Brown, M. A. Green, and R. P. Corkish, “Limiting efficiency for a multi-band solar cell containing three and four bands,” Physica E 14 (2002) 121-125.
M. A. Green, “Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells,” Progress in Photovoltaics: Research and Applications 9 (2001) 137-144.
M. A. Green, G. Conibeer, D. Konig, S. Shrestha, S. Huang, P. Aliberti, L. Treiber, R. Patterson, B. P. Veettil, A. Hsieh, Y. Feng, A. Luque, A. Marti, P. G. Linares, E. Canovas, E. Antolin, D. F. Marron, C. Tablero, E. Hernandez, J. Guillemoles, L. Huang, A. Le Bris, T. Schmidt, R. Clady, and M. Tayebjee, “Hot carrier solar cells, challenges and recent progress,” in Proc. 2010 IEEE Photovoltaics Specialists Conf., pp. 57-60.
G. Conibeer, N. Ekins-Daukes, J. Guillemoles, D. Konig, E. Cho, C. Jiang, S. Shrestha, and M. A. Green, “Progress on hot carrier cells,” Solar Energy Materials & Solar Cells 93 (2009) 713-719.
A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots,” Annual Review of Physical Chemistry 52 (2001) 193-231.
P. Wurfel, “Solar energy conversion with hot electrons form impact ionisation,” Solar Energy Materials and Solar Cells 46 (1997) 43-52.
D. Konig, K. Casalenuovo, Y. Takeda, G. Conibeer, J. F. Guillemoles, R. Patterson, L. M. Huang, and M. A. Green, “Hot carrier solar cells: Principle, materials and design,” Physica E 42 (2010) 2862-2866.
S. Baskoutas, and A. F. Terzis, “Size-dependent band gap of colloidal quantum dots,” Journal of Applied Physics 99 (2006) 013708.
M. Kumar, M. K. Rajpalke, T. N. Bhat, B. Roul, A. T. Kalghatgi, and S. B. Krupanidhi, “Size dependent bandgap of molecular beam epitaxy grown InN quantum dots measured by scanning tunneling spectroscopy,” Journal of Applied Physics 110 (2011) 114317.
K. H. Schmidt, G. Medeiros-Ribeiro, J. Garcia, and P. M. Petroff, “Size quantization effects in InAs self-assembled quantum dots,” Applied Physics Letters 70 (1997) 1727-1729.
E. O. Chukwuocha, M. C. Onyeaju, and T. S. T. Harry, “Theoretical studies on the effect of confinement on quantum dots using the Brus equation,” World Journal of Condensed Matter Physics 2 (2012) 96-100.
A. Marti, L. Cuadra, and A. Luque, “Quantum dot intermediate band solar cell,” in Proc. 2000 IEEE Photovoltaics Specialists Conf., pp. 940-943.
D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Applied Physics Letters 96 (2010) 061913.
M. Jo, T. Mano, Y. Sakuma, and K. Sakoda, “Extremely high-density GaAs quantum dots grown by droplet epitaxy,” Applied Physics Letters 100 (2012) 212113.
D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, “Positioning effects on quantum dot solar cells grown by molecular beam epitaxy,” Applied Physics Letters 96 (2010) 083108.
G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris Jr., “Vertically aligned and electronically coupled growth induced InAs islands in GaAs,” Physical Review Letters 76 (1996) 952-955.
S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Applied Physics Letters 92 (2008) 123512.
R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Applied Physics Letters 93 (2008) 083111.
E. Radziemska, and E. Klugmann, “Thermally affected parameters of the current-voltage characteristics of silicon photocell,” Energy Conversion and Management 43 (2002) 1889-1900.
E. Radziemska, “Thermal performance of Si and GaAs based solar cells and modules: a review,” Progress in Energy and Combustion Science 29 (2003) 407-424.
E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, and M. Mikolasek, “Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices,” Journal of Semiconductors 35 (2014) 054001.
R. Songmuang, S. Kiravittaya, M. Sawadsaringkarn, S. Panyakeow, and O.G. Schmidt, “Photoluminescence investigation of low-temperature capped self-assembled InAs/GaAs quantum dots,” Journal of Crystal Growth 251 (2003) 166-171.
S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot molecules for photovoltaic cell application,” in Proc. 2005 IEEE Photovoltaics Specialists Conf., pp. 98-101.
S. Ruangdet, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Improvement of PV performance by using multi-stacked high density InAs quantum dot molecules,” in Proc. 2006 IEEE Photovoltaic Energy Conversion Conf., pp. 225-228.