A Comparative Forecast of Road Traffic Fatalities in Thailand: A Case Study with and without the Impact of COVID-19

Main Article Content

Areerat Nuarseejun
Taweesak Taekrattok

Abstract

Road traffic accidents in Thailand remain a major issue, causing significant loss of life and property. The current Road Safety Master Plan (2022–2027) serves as a key strategic framework, with targets set based on data from the year 2020, a period when Thailand and many other countries implemented strict measures to control the COVID-19 pandemic, which consequently affected road accident statistics. This study aims to analyze and predict the number of fatalities caused by road traffic accidents under two scenarios, with and without the impact of the COVID-19 pandemic. The analysis uses mortality data from 2011 to 2023, obtained from three national mortality databases maintained by the Ministry of Public Health. Time series analysis is employed using the Winter’s Exponential Smoothing Method, with forecasts generated for each of Thailand’s 77 provinces. The actual death data from 2022 and 2023 are used to evaluate forecasting accuracy using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results indicate that the analysis under the assumption of no COVID-19 impact yields significantly higher accuracy for both years. In 2022, the RMSE and MAPE values were below 122.04 and 5.77, respectively, while in 2023, these values were below 143.52 and 9.16. These findings suggest that excluding anomalous periods from the dataset leads to more accurate results, making the analysis more suitable for refining the target indicators of the Road Safety Master Plan in alignment with local contexts

Article Details

How to Cite
Nuarseejun, A., & Taekrattok, T. (2025). A Comparative Forecast of Road Traffic Fatalities in Thailand: A Case Study with and without the Impact of COVID-19. Naresuan University Engineering Journal, 20(2), 1–10. retrieved from https://ph01.tci-thaijo.org/index.php/nuej/article/view/262327
Section
Research Paper

References

คณะทำงานจัดทำรายงานสุขภาพคนไทย. (2565). โควิด-19 กับการลดลงของอุบัติเหตุและการสื่อสารออนไลน์ที่เพิ่มขึ้น (ตอนที่ 2). สืบค้นจาก

https://www.thaihealthreport.com/th/articles_detail.php?id=112

ปริชชา พละพันธ์. (2560). คู่มือวิเคราะห์และจัดการข้อมูลสถิติด้วย Minitab (ฉบับมืออาชีพ). กรุงเทพฯ: บริษัท ไอดีซี พรีเมียร์ จำกัด.

ศูนย์อำนวยการความปลอดภัยทางถนน. (2566). แผนแม่บทความปลอดภัยทางถนน พ.ศ. 2565–2570. กรุงเทพฯ: ศูนย์อำนวยการความปลอดภัยทางถนน.

Chand, S., Yee, E., Alsultan, A., & Dixit, V. V. (2021). A descriptive analysis on the impact of COVID-19 lockdowns on road traffic incidents in Sydney, Australia. International Journal of Environmental Research and Public Health, 18(21), 11701. https://doi.org/10.3390/ijerph182111701

Ferenchak, N. N. (2025). US road safety during COVID-19: Motorist, pedestrian and bicyclist fatality trends. International Journal of Disaster Resilience in the Built Environment, 16(2), 193–208. https://doi.org/10.1108/IJDRBE-09-2022-0091

Frej, D. P., & Zuska, A. (2023). The impact of the COVID-19 pandemic on the frequency of vehicle accidents in Poland. The Archives of Automotive Engineering – Archiwum Motoryzacji, 99(1).

https://doi.org/10.14669/AM/162666

Getahun, K. A. (2021). Time series modeling of road traffic accidents in Amhara Region. Journal of Big Data, 8(102). https://doi.org/10.1186/s40537-021-00493-z

Jurkovic, M., Gorzelanczyk, P., Kalina, T., Jaros, J., & Mohanty, M. (2022). Impact of the COVID-19 pandemic on road traffic accident forecasting in Poland and Slovakia. Open Engineering, 12, 578–589. https://doi.org/10.1515/eng-2022-0370

Khasawneh, M. A., Al-Omari, A. A., & Ganam, B. (2022). Forecasting traffic accidents in developing countries using time series analysis. Jordan Journal of Civil Engineering, 16(1), 54–70.

Mannering, F. L., & Bhat, C. R. (2014). Analytic methods in accident research: Methodological frontier and future directions. Analytic Methods in Accident Research, 1, 1–22. https://doi.org/10.1016/j.amar.2013.09.001

Ratanawimon, S., & Tanawongsuwan, P. (2024). Prediction of severity level of road traffic accident in Thailand using machine learning. In Proceedings of the 10th World Congress on Electrical Engineering and Computer Systems and Sciences (EECSS'24), Barcelona, Spain, August 19–21, 2024 (Paper No. CIST 179). https://doi.org/10.11159/cist24.179

Sekadakis, M., Katrakazas, C., Michelaraki, E., Kehagia, F., & Yannis, G. (2021). Analysis of the impact of COVID-19 on collisions, fatalities and injuries using time series forecasting: The case of Greece. Accident Analysis and Prevention, 162, 106391. https://doi.org/10.1016/j.aap.2021.106391

Tefft, B. C. (2024). Traffic safety impact of the COVID-19 pandemic: Fatal crashes in 2020–2022 (Research Brief). AAA Foundation for Traffic Safety. https://doi.org/10.21949/1526056

Tongpradubpetch, A., & Kanitpong, K. (2024). Impact of COVID-19 on road crashes in Thailand. IATSS Research, 48, 230–244.

https://doi.org/10.1016/j.iatssr.2024.04.001

Zhang, Y., Zhang, H., Hu, C., Chen, F., & Wan, Z. (2022). The impact of COVID-19 on road traffic accidents: A case study of severely affected city in China. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 3429–3434. https://doi.org/10.1109/ITSC55140.2022.9922248