Marine Predators Algorithm for discrete optimization problems: a review of the state-of-the-art

Main Article Content

Niracha Bunkham
Chaitamlong Pongpattanasiri
Saisumpan Sooncharoen

Abstract

The Marine Predators Algorithm (MPA) is inspired by the hunting behavior of marine predators. This natural phenomenon involves both exploration and exploitation, mirroring the movement patterns of prey and predators. The MPA strategy optimizes solutions by balancing these two processes. It has been applied to various research fields, including Mathematics, Engineering, Medicine, Physics, and Astronomy. This research aims to categorize and investigate the application of MPA to discrete optimization problems. Data from studies published between 2020 and 2023 in the Scopus database were collected. Following the classification of problem types, we provide a summary of MPA's strengths and weaknesses. The critical analysis and investigation section addresses key questions and explores potential future work in the application of MPA to discrete problem-solving

Article Details

How to Cite
Bunkham, N., Pongpattanasiri, C., & Sooncharoen, S. (2024). Marine Predators Algorithm for discrete optimization problems: a review of the state-of-the-art. Naresuan University Engineering Journal, 19(2), 1–27. Retrieved from https://ph01.tci-thaijo.org/index.php/nuej/article/view/257102
Section
Review Paper
Author Biography

Saisumpan Sooncharoen, Centre of Operations Research and Industrial Applications (CORIA), Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand

Lecturer in the Department of Industrial Engineering, Faculty of Engineering, Naresuan University

References

Abdel-Basset, M., Mohamed, R., Chakrabortty, R. K., Ryan, M., & Mirjalili, S. (2021). New binary marine predators optimization algorithms for

–1 knapsack problems. Computers and

Industrial Engineering, 151, 106949. http://doi.org/10.1016/j.cie.2020.106949

Abdel-Basset, M., Mohamed, R., Elhoseny, M., Bashir, A. K., Jolfaei, A., & Kumar, N. (2021). Energy-Aware Marine Predators Algorithm for

Task Scheduling in IoT-Based Fog

Computing Applications. IEEE Transactions

on Industrial Informatics, 17(7), 5068-5076. http://doi.org/10.1109/TII.2020.3001067

Abdel-Basset, M., Moustafa, N., Mohamed, R., Elkomy, O. M., & Abouhawwash, M. (2021). Multi-Objective Task Scheduling Approach for Fog Computing. IEEE Access, 9, 126988-127009. http://doi.org/10.1109/ACCESS.2021.3111130

Al-qaness, M. A. A., Helmi, A. M., Dahou, A., & Elaziz, M. A. (2022). The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors:

A Comprehensive Analysis. Biosensors, 12(10), 821. http://doi.org/10.3390/bios12100821

Amroune, M. (2022). Wind integrated optimal power flow considering power losses, voltage deviation, and emission using equilibrium optimization algorithm. Energy, Ecology

and Environment, 7(4), 369-392. http://doi.org/10.1007/s40974-022-00249-2

Amroune, M., Boukaroura, A., Bourzami, A., Slimani, L., & Musirin, I. (2022). Performance Comparison of Recent Nature-Inspired Optimization Algorithms in Optimal Placement

and Sizing of Distributed Energy

Resources. ProcessIntegration and

Optimization for Sustainability,7(4),641-654. http://doi.org/10.1007/s41660-022-00306-7

Attiya, I., Abualigah, L., Elsadek, D., Chelloug, S. A., & Abd Elaziz, M. (2022). An Intelligent Chimp Optimizer for Scheduling of IoT Application Tasks in Fog Computing. Mathematics, 10(7)

, 1100. http://doi.org/10.3390/math10071100

Chen, D., & Zhang, Y. (2023). Diversity-Aware Marine Predators Algorithm for Task Scheduling in Cloud Computing. Entropy, 25(2), 285. http://doi.org/10.3390/e25020285

Dai, Y., Zhao, L., & Lyu, L. (2022). MEC enabled cooperative sensing and resource

allocation for industrial IoT systems.

China Communications, 19(7), 214-225. http://doi.org/10.23919/JCC.2022.07.017

Eid, A., Kamel, S., & Abualigah, L. (2021). Marine predators algorithm for optimal allocation

of active and reactive power resources

in distribution networks. Neural Computing

and Applications, 33(21), 14327-14355. http://doi.org/10.1007/s00521-021-06078-4

Ervural, B., & Hakli, H. (2023). A binary reptile search algorithm based on transfer functions with

a new stochastic repair method for 0–1

knapsack problems. Computers and

Industrial Engineering, 178, 109080. http://doi.org/10.1016/j.cie.2023.109080

Ferahtia, S., Rezk, H., Djeroui, A., Houari, A., Fathy, A., Abdelkareem, M. A., & Olabi, A. G. (2022). Optimal heuristic economic management strategy for microgrids based PEM

fuel cells. International Journal

of Hydrogen Energy. 52, 775-784. http://doi.org/10.1016/j.ijhydene.2022.02.231

Hoballah, A., & Azmy, A. M. (2023). Constrained economic dispatch following generation

outage for hot spinning reserve

allocation using hybrid grey wolf optimizer Alexandria Engineering Journal, 62, 169-180. http://doi.org/10.1016/j.aej.2022.07.033

Jain, S., Ramesh, D., Trivedi, M. C., & Edla, D. R. (2023). Evaluation of metaheuristic optimization algorithms for optimal

allocation of surface water and

groundwater resources for crop production. Agricultural Water Management, 279, 108181. http://doi.org/10.1016/j.agwat.2023.108181

Kong, F., Zhuo, Y., & Song, C. (2022). Ecological multi-objective joint optimized scheduling of

cascade hydropower plants based on improved marine predators algorithm. Journal of Renewable and Sustainable Energy, 14(4), 044503. http://doi.org/10.1063/5.0091309

Kuang, F., Xu, Z., & Masdari, M. (2022). Multi-workflow scheduling and resource provisioning in Mobile Edge Computing using opposition-based Marine-Predator Algorithm. Pervasive and Mobile Computing, 87, 101715. http://doi.org/10.1016/j.pmcj.2022.101715

Kusuma, P. D., & Novianty, A. (2023). Multiple Interaction Optimizer: A Novel Metaheuristic and Its Application to Solve Order Allocation Problem. International Journal of Intelligent Engineering and Systems, 16(2), 440-453. http://doi.org/10.22266/ijies2023.0430.35

Liang, S., Pan, Y., Zhang, H., Zhang, J., Wang, F., Chen, Z., & Wang, P. (2022). Marine Predators Algorithm Based on Adaptive Weight and Chaos Factor and Its Application. Pervasive

and Mobile Computing, 2022, 1-12. http://doi.org/10.1155/2022/4623980

Pham, L. H., Dinh, B. H., & Nguyen, T. T. (2022). Optimal power flow for an integrated wind-solar-hydro-thermal power system considering uncertainty of wind speed and solar radiation. Neural Computing and Applications, 34(13), 10655-10689. http://doi.org/10.1007/s00521-022-07000-2

Pratap, A., Tiwari, P., Maurya, R., & Singh, B. (2023). A Novel Hybrid Optimization Approach for Optimal Allocation of Distributed

Generation and Distribution Static

Compensator with Network Reconfiguration

in Consideration of Electric Vehicle

Charging Station. Electric Power

Components and Systems, 51(13), 1302-1327. http://doi.org/10.1080/15325008.2023.2196673

Rezk, H., Fathy, A., & Aly, M. (2021). A robust photovoltaic array reconfiguration strategy based on coyote optimization algorithm for enhancing the extracted power under partial shadow condition. Energy Reports, 7, 109-124. http://doi.org/10.1016/j.egyr.2020.11.035

Ribas, I., Leisten, R., & Framiñan, J. M. (2010).

Review and classification of hybrid

flow shop scheduling problems from a production system and a solutions

procedure perspective. Computers & Operations Research, 37(8), 1439-1454. http://doi.org/10.1016/j.cor.2009.11.001

Shaheen, A. M., Elsayed, A. M., Ginidi, A. R., El-Sehiemy, R. A., Alharthi, M. M., & Ghoneim, S. S. M. (2022). A novel improved marine predators algorithm for combined heat and power economic dispatch problem. Alexandria Engineering Journal, 61(3), 1834-1851. http://doi.org/10.1016/j.aej.2021.07.001

Shaker, Y. O., Yousri, D., Osama, A., Al-Gindy, A., Tag-Eldin, E., & Allam, D. (2021).

Optimal Charging/Discharging Decision of

Energy Storage Community in Grid-Connected Microgrid Using Multi-Objective Hunger Game Search Optimizer. IEEE Access, 9, 120774-120794.http://doi.org/10.1109/ACCESS.2021.3101839

Vo, V. S., Pham, L. H., & Hoang, H. M. (2023). Novel Metaheuristic Algorithm for Electrical Generation Cost Optimization of Photovoltaic-Hydro-Thermal Power Systems. GMSARN International Journal, 17(2), 192-202.

Wei, Y., Othman, Z., Daud, K. M., Yin, S., Luo, Q., & Zhou, Y. (2022). Equilibrium Optimizer and Slime Mould Algorithm with Variable Neighborhood Search for Job Shop

Scheduling. Mathematics, 10(21), 4063.

http://doi.org/10.3390/math10214063

Abd Elaziz, M., Abualigah, L., Ibrahim, R. A., & Attiya, I. (2021). IoT Workflow Scheduling Using Intelligent Arithmetic Optimization Algorithm in Fog Computing. Computational Intelligence and Neuroscience, 2021, 9114113. http://doi.org/10.1155/2021/9114113

Belbachir, N., Zellagui, M., Settoul, S., El-Bayeh, C. Z., & El-Sehiemy, R. A. (2023). Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties

in Electrical Distribution Network Using

Marine Predator Algorithm. Energies, 16(4), http://doi.org/ 10.3390/en16041595

Adajah, Y.Y., Thomas, S., Haruna, M.S., and Anaza, S.O. (2021). Distributed Generation (DG):

A Review. 2021 1st International

Conference on Multidisciplinary Engineering and Applied Scienc (pp.1-5). IEEE. https://ieeexplore.ieee.org/document/9692353

/keywords#keywords

Ahmed, A., and Ahmed, E. (2016). A survey on

mobile edge computing. 10th

IEEE International (pp.1-8). IEEE. https://ieeexplore.ieee.org/document/7727082

Ahmed, Z.E., Hasan, M.K., Saeed, R.A., Hassan, R., Islam, S., Mokhtar, R.A., and Akhtaruzzaman, M. (2020). Optimizing Energy Consumption for Cloud Internet of Things. Frontiers in Physics, 8, http://doi.org/358. 10.3389/fphy.2020.00358

Bernhard, K., and Jens, V. (2012). Combinatorial optimization:Theory and algorithms (5st ed.). Springer-verlag. http://doi.org/10.1007/978-3-642-24488-9

Burnham, J.F. (2006). Scopus database: a review. Biomed Digit Libr, 3, 1. http://doi.org/10.1186/1742-5581-3-1

Das, R., and Inuwa, M.M. (2023). A review on fog computing: Issues, characteristics, challenges, and potential applications. Telematics

and Informatics Reports, 10, 100049. http://doi.org/10.1016/j.teler.2023.100049

Dharavat, N., Sudabattula, S.K., andSuresh, V. (2022). Optimal Integration of Distributed Generators (DGs) Shunt Capacitors (SCs) and Electric Vehicles (EVs) in a Distribution

System (DS) using Marine Predator Algorithm.International Journal of Renewable Energy Research, 12(3), 1637-1650. http://doi.org/10.20508/ijrer.v12i3.13230.g850

Faramarzi, A., Heidarinejad, M., Mirjalili, S., andGandomi, A.H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377. http://doi.org/10.1016/j.eswa.2020.113377

Gupta, S.K., and Malik, M. (2016). Review of Hydrothermal Scheduling Technique. MANTHAN-2016 National Conf. on Recent Trends in Computing and Communication Technologies (RCCT-2016) (pp. 1-9). Excel india publishers. https://www.researchgate.net/publication/321385023_Review_of_Hydrothermal_Scheduling_Technique

Liu, Q., Li, X., Liu, H., andGuo, Z. (2020). Multi-objective metaheuristics for discrete optimization problems: A review of the state-of-the-art. Applied Soft Computing, 93, 106382. http://doi.org/10.1016/j.asoc.2020.106382

Mann, Z. (2017). The Top Eight Misconceptions about NP-Hardness. Computer, 50, 72-79. http://doi.org/10.1109/MC.2017.146

Mantegna, R.N. (1994). Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 49(5), 4677-4683. http://doi.org/10.1103/physreve.49.4677

Marghny, M.H., Zanaty, E.A., Dukhan, W.H.,

andReyad, O. (2022). A hybrid multi-

objective optimization algorithm for software requirement problem. Alexandria Engineering Journal, 61(9), 6991-7005. http://doi.org/.1016/j.aej.2021.12.043

Mei, W., Zheng, B., You, C., andZhang, R. (2021). Intelligent Reflecting Surface Aided

Wireless Networks: From Single-Reflection

to Multi-Reflection Design and

Optimization. 110(9), 1380-1400. http://doi.org/10.1109/JPROC.2022.3170656

Naqvi, M.A., and Amin, S.H. (2021). Supplier selection and order allocation: a literature review. Journal of Data, Information and Management, 3(2), 125-139. http://doi.org/10.1007/s42488-021-00049-z

Parvez, S.M., Jahan, F., Brune, M.N., Gorman, J.F., Rahman, M.J., Carpenter, D., and Sly, P.D. (2021). Health consequences of exposure to e-waste: an updated systematic review. Lancet Planet Health, 5(12), e905-e920. http://doi.org/10.1016/S2542-5196(21)00263-1

Pradhan, T., Israni, A., andSharma, M. (2014). Solving the 0–1 Knapsack problem using Genetic Algorithm and Rough Set Theory. 1120-1125. http://doi.org/10.1109/icaccct.2014.7019272

Rai, R., Dhal, K.G., Das, A., andRay, S. (2023). An Inclusive Survey on Marine Predators Algorithm: Variants and Applications.

Archives of Computational Methods in Engineering, 30(5), 3133-3172. http://doi.org/10.1007/s11831-023-09897-x

Ribas, I., Leisten, R., andFramiñan, J.M. (2010).

Review and classification of hybrid

flow shop scheduling problems from a production system and a solutions procedure

perspective. Computers & Operations

Research, 37(8), 1439-1454. http://doi.org/10.1016/j.cor.2009.11.001

Sadiq, A.S., Dehkordi, A.A., Mirjalili, S., andPham, Q.V. (2022). Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks. Expert Systems with Applications, 203, 117395. http://doi.org/10.1016/j.eswa.2022.117395

Sanguesa, J.A., Torres-Sanz, V., Garrido, P., Martinez, F.J., andMarquez-Barja, J.M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, 4(1), 372-404. http://doi.org/10.3390/smartcities4010022

Santoso, H., Budiyanto, Y., andSetiabudy, R. (2013). Review of microgrid technology. 2013 International Conference on QiR,

Yogyakarta (pp. 127-132). IEEE. https://ieeexplore.ieee.org/document/6632550

Shaheen, A.M., Elsayed, A.M., El-Sehiemy, R.A., Kamel, S., andGhoneim, S.S.M. (2022). A modified marine predators optimization algorithm for simultaneous network reconfiguration and distributed generator allocation in distribution systems

under different loading conditions.

Engineering Optimization, 54(4), 687-708. http://doi.org/10.1080/0305215X.2021.189779

Sharma, D., Jalil, M.F., Ansari, M.S., andBansal, R.C. (2023). A review of PV array reconfiguration techniques for maximum power extraction under partial shading conditions. Optik, 275, 170559. http://doi.org/10.1016/j.ijleo.2023.170559

Smanchat, S., and Viriyapant, K. (2015). Taxonomies

of workflow scheduling problem and

techniques in the cloud. Future

Generation Computer Systems, 52, 1-12. http://doi.org/10.1016/j.future.2015.04.019

Sowmya, R., and Sankaranarayanan, V. (2022a). Optimal Scheduling of Electric Vehicle Charging at Geographically Dispersed Charging Stations with Multiple Charging Piles. International Journal of Intelligent Transportation

Systems Research, 20(3), 672-695. http://doi.org/10.1007/s13177-022-00316-2

Sowmya, R., and Sankaranarayanan, V. (2022b). Optimal vehicle-to-grid and grid-to-vehicle

scheduling strategy with uncertainty management using improved marine

predator algorithm. Computers and

Electrical Engineering, 100, 107949. http://doi.org/10.1016/j.compeleceng.2022.107949

Su, Y., Gao, H., andZhang, S. (2022). Hybrid Resource Allocation Scheme in Secure Intelligent Reflecting Surface-Assisted IoT KSII Transactions on Internet and Information Systems, 16(11), 3256-3274. http://doi.org/10.3837/tiis.2022.10.003

Sulaiman, M.H., and Mustaffa, Z. (2022a). Optimal placement and sizing of FACTS devices for optimal power flow using

metaheuristic optimizers. Results in

Control and Optimization, 8,100145. http://doi.org/10.1016/j.rico.2022.100145

Sulaiman, M.H., and Mustaffa, Z. (2022b).

Optimal placement and sizing of

FACTS devices for optimal power flow

using metaheuristic optimizers Results in

Control and Optimization, 8, 100145. http://doi.org/10.1016/j.rico.2022.100145

Ullah, H., and Parveen, S. (2011). Review on Job-Shop and Flow-Shop Scheduling Using. Journal of Mechanical Engineering, 41(2), 130-146. http://doi.org/10.3329/jme.v41i2.7508

Vijayalakshmi, V.J., Arumugam, P., Ananthi Christy, A., andBrindha, R. (2022). Simultaneous allocation of EV charging stations and renewable energy sources: An Elite RERNN-m2MPA

approach. International Journal of

Energy Research, 46(7), 9020-9040. http://doi.org/10.1002/er.7780

Wu, D.W., and Wang, R.Z. (2006). Combined cooling, heating and power: A review. Progress in Energy and Combustion Science, 32(5), 459-495. https://doi.org/10.1016/j.pecs.2006.02.001

Younesi, S., Ahmadi, B., Ceylan, O., andOzdemir,

A. (2021). Energy Loss Minimization with Parallel Implementation of Marine Predators Algorithm. 2021 13th International Conference on Electrical and Electronics Engineering, ELECO 2021 (pp. 67-72). IEEE. https://ieeexplore.ieee.org/document/9677829.

Zellagui, M., Belbachir, N., Settoul, S., and

El-Bayeh, C.Z. (2022). Smart and Power

Grid Systems - Design Challenges and Paradigms. River Publishers. http://doi.org/ 10.1201/9781003339557-4