Marine Predators Algorithm for discrete optimization problems: a review of the state-of-the-art
Main Article Content
Abstract
The Marine Predators Algorithm (MPA) is inspired by the hunting behavior of marine predators. This natural phenomenon involves both exploration and exploitation, mirroring the movement patterns of prey and predators. The MPA strategy optimizes solutions by balancing these two processes. It has been applied to various research fields, including Mathematics, Engineering, Medicine, Physics, and Astronomy. This research aims to categorize and investigate the application of MPA to discrete optimization problems. Data from studies published between 2020 and 2023 in the Scopus database were collected. Following the classification of problem types, we provide a summary of MPA's strengths and weaknesses. The critical analysis and investigation section addresses key questions and explores potential future work in the application of MPA to discrete problem-solving
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abdel-Basset, M., Mohamed, R., Chakrabortty, R. K., Ryan, M., & Mirjalili, S. (2021). New binary marine predators optimization algorithms for
–1 knapsack problems. Computers and
Industrial Engineering, 151, 106949. http://doi.org/10.1016/j.cie.2020.106949
Abdel-Basset, M., Mohamed, R., Elhoseny, M., Bashir, A. K., Jolfaei, A., & Kumar, N. (2021). Energy-Aware Marine Predators Algorithm for
Task Scheduling in IoT-Based Fog
Computing Applications. IEEE Transactions
on Industrial Informatics, 17(7), 5068-5076. http://doi.org/10.1109/TII.2020.3001067
Abdel-Basset, M., Moustafa, N., Mohamed, R., Elkomy, O. M., & Abouhawwash, M. (2021). Multi-Objective Task Scheduling Approach for Fog Computing. IEEE Access, 9, 126988-127009. http://doi.org/10.1109/ACCESS.2021.3111130
Al-qaness, M. A. A., Helmi, A. M., Dahou, A., & Elaziz, M. A. (2022). The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors:
A Comprehensive Analysis. Biosensors, 12(10), 821. http://doi.org/10.3390/bios12100821
Amroune, M. (2022). Wind integrated optimal power flow considering power losses, voltage deviation, and emission using equilibrium optimization algorithm. Energy, Ecology
and Environment, 7(4), 369-392. http://doi.org/10.1007/s40974-022-00249-2
Amroune, M., Boukaroura, A., Bourzami, A., Slimani, L., & Musirin, I. (2022). Performance Comparison of Recent Nature-Inspired Optimization Algorithms in Optimal Placement
and Sizing of Distributed Energy
Resources. ProcessIntegration and
Optimization for Sustainability,7(4),641-654. http://doi.org/10.1007/s41660-022-00306-7
Attiya, I., Abualigah, L., Elsadek, D., Chelloug, S. A., & Abd Elaziz, M. (2022). An Intelligent Chimp Optimizer for Scheduling of IoT Application Tasks in Fog Computing. Mathematics, 10(7)
, 1100. http://doi.org/10.3390/math10071100
Chen, D., & Zhang, Y. (2023). Diversity-Aware Marine Predators Algorithm for Task Scheduling in Cloud Computing. Entropy, 25(2), 285. http://doi.org/10.3390/e25020285
Dai, Y., Zhao, L., & Lyu, L. (2022). MEC enabled cooperative sensing and resource
allocation for industrial IoT systems.
China Communications, 19(7), 214-225. http://doi.org/10.23919/JCC.2022.07.017
Eid, A., Kamel, S., & Abualigah, L. (2021). Marine predators algorithm for optimal allocation
of active and reactive power resources
in distribution networks. Neural Computing
and Applications, 33(21), 14327-14355. http://doi.org/10.1007/s00521-021-06078-4
Ervural, B., & Hakli, H. (2023). A binary reptile search algorithm based on transfer functions with
a new stochastic repair method for 0–1
knapsack problems. Computers and
Industrial Engineering, 178, 109080. http://doi.org/10.1016/j.cie.2023.109080
Ferahtia, S., Rezk, H., Djeroui, A., Houari, A., Fathy, A., Abdelkareem, M. A., & Olabi, A. G. (2022). Optimal heuristic economic management strategy for microgrids based PEM
fuel cells. International Journal
of Hydrogen Energy. 52, 775-784. http://doi.org/10.1016/j.ijhydene.2022.02.231
Hoballah, A., & Azmy, A. M. (2023). Constrained economic dispatch following generation
outage for hot spinning reserve
allocation using hybrid grey wolf optimizer Alexandria Engineering Journal, 62, 169-180. http://doi.org/10.1016/j.aej.2022.07.033
Jain, S., Ramesh, D., Trivedi, M. C., & Edla, D. R. (2023). Evaluation of metaheuristic optimization algorithms for optimal
allocation of surface water and
groundwater resources for crop production. Agricultural Water Management, 279, 108181. http://doi.org/10.1016/j.agwat.2023.108181
Kong, F., Zhuo, Y., & Song, C. (2022). Ecological multi-objective joint optimized scheduling of
cascade hydropower plants based on improved marine predators algorithm. Journal of Renewable and Sustainable Energy, 14(4), 044503. http://doi.org/10.1063/5.0091309
Kuang, F., Xu, Z., & Masdari, M. (2022). Multi-workflow scheduling and resource provisioning in Mobile Edge Computing using opposition-based Marine-Predator Algorithm. Pervasive and Mobile Computing, 87, 101715. http://doi.org/10.1016/j.pmcj.2022.101715
Kusuma, P. D., & Novianty, A. (2023). Multiple Interaction Optimizer: A Novel Metaheuristic and Its Application to Solve Order Allocation Problem. International Journal of Intelligent Engineering and Systems, 16(2), 440-453. http://doi.org/10.22266/ijies2023.0430.35
Liang, S., Pan, Y., Zhang, H., Zhang, J., Wang, F., Chen, Z., & Wang, P. (2022). Marine Predators Algorithm Based on Adaptive Weight and Chaos Factor and Its Application. Pervasive
and Mobile Computing, 2022, 1-12. http://doi.org/10.1155/2022/4623980
Pham, L. H., Dinh, B. H., & Nguyen, T. T. (2022). Optimal power flow for an integrated wind-solar-hydro-thermal power system considering uncertainty of wind speed and solar radiation. Neural Computing and Applications, 34(13), 10655-10689. http://doi.org/10.1007/s00521-022-07000-2
Pratap, A., Tiwari, P., Maurya, R., & Singh, B. (2023). A Novel Hybrid Optimization Approach for Optimal Allocation of Distributed
Generation and Distribution Static
Compensator with Network Reconfiguration
in Consideration of Electric Vehicle
Charging Station. Electric Power
Components and Systems, 51(13), 1302-1327. http://doi.org/10.1080/15325008.2023.2196673
Rezk, H., Fathy, A., & Aly, M. (2021). A robust photovoltaic array reconfiguration strategy based on coyote optimization algorithm for enhancing the extracted power under partial shadow condition. Energy Reports, 7, 109-124. http://doi.org/10.1016/j.egyr.2020.11.035
Ribas, I., Leisten, R., & Framiñan, J. M. (2010).
Review and classification of hybrid
flow shop scheduling problems from a production system and a solutions
procedure perspective. Computers & Operations Research, 37(8), 1439-1454. http://doi.org/10.1016/j.cor.2009.11.001
Shaheen, A. M., Elsayed, A. M., Ginidi, A. R., El-Sehiemy, R. A., Alharthi, M. M., & Ghoneim, S. S. M. (2022). A novel improved marine predators algorithm for combined heat and power economic dispatch problem. Alexandria Engineering Journal, 61(3), 1834-1851. http://doi.org/10.1016/j.aej.2021.07.001
Shaker, Y. O., Yousri, D., Osama, A., Al-Gindy, A., Tag-Eldin, E., & Allam, D. (2021).
Optimal Charging/Discharging Decision of
Energy Storage Community in Grid-Connected Microgrid Using Multi-Objective Hunger Game Search Optimizer. IEEE Access, 9, 120774-120794.http://doi.org/10.1109/ACCESS.2021.3101839
Vo, V. S., Pham, L. H., & Hoang, H. M. (2023). Novel Metaheuristic Algorithm for Electrical Generation Cost Optimization of Photovoltaic-Hydro-Thermal Power Systems. GMSARN International Journal, 17(2), 192-202.
Wei, Y., Othman, Z., Daud, K. M., Yin, S., Luo, Q., & Zhou, Y. (2022). Equilibrium Optimizer and Slime Mould Algorithm with Variable Neighborhood Search for Job Shop
Scheduling. Mathematics, 10(21), 4063.
http://doi.org/10.3390/math10214063
Abd Elaziz, M., Abualigah, L., Ibrahim, R. A., & Attiya, I. (2021). IoT Workflow Scheduling Using Intelligent Arithmetic Optimization Algorithm in Fog Computing. Computational Intelligence and Neuroscience, 2021, 9114113. http://doi.org/10.1155/2021/9114113
Belbachir, N., Zellagui, M., Settoul, S., El-Bayeh, C. Z., & El-Sehiemy, R. A. (2023). Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties
in Electrical Distribution Network Using
Marine Predator Algorithm. Energies, 16(4), http://doi.org/ 10.3390/en16041595
Adajah, Y.Y., Thomas, S., Haruna, M.S., and Anaza, S.O. (2021). Distributed Generation (DG):
A Review. 2021 1st International
Conference on Multidisciplinary Engineering and Applied Scienc (pp.1-5). IEEE. https://ieeexplore.ieee.org/document/9692353
/keywords#keywords
Ahmed, A., and Ahmed, E. (2016). A survey on
mobile edge computing. 10th
IEEE International (pp.1-8). IEEE. https://ieeexplore.ieee.org/document/7727082
Ahmed, Z.E., Hasan, M.K., Saeed, R.A., Hassan, R., Islam, S., Mokhtar, R.A., and Akhtaruzzaman, M. (2020). Optimizing Energy Consumption for Cloud Internet of Things. Frontiers in Physics, 8, http://doi.org/358. 10.3389/fphy.2020.00358
Bernhard, K., and Jens, V. (2012). Combinatorial optimization:Theory and algorithms (5st ed.). Springer-verlag. http://doi.org/10.1007/978-3-642-24488-9
Burnham, J.F. (2006). Scopus database: a review. Biomed Digit Libr, 3, 1. http://doi.org/10.1186/1742-5581-3-1
Das, R., and Inuwa, M.M. (2023). A review on fog computing: Issues, characteristics, challenges, and potential applications. Telematics
and Informatics Reports, 10, 100049. http://doi.org/10.1016/j.teler.2023.100049
Dharavat, N., Sudabattula, S.K., andSuresh, V. (2022). Optimal Integration of Distributed Generators (DGs) Shunt Capacitors (SCs) and Electric Vehicles (EVs) in a Distribution
System (DS) using Marine Predator Algorithm.International Journal of Renewable Energy Research, 12(3), 1637-1650. http://doi.org/10.20508/ijrer.v12i3.13230.g850
Faramarzi, A., Heidarinejad, M., Mirjalili, S., andGandomi, A.H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377. http://doi.org/10.1016/j.eswa.2020.113377
Gupta, S.K., and Malik, M. (2016). Review of Hydrothermal Scheduling Technique. MANTHAN-2016 National Conf. on Recent Trends in Computing and Communication Technologies (RCCT-2016) (pp. 1-9). Excel india publishers. https://www.researchgate.net/publication/321385023_Review_of_Hydrothermal_Scheduling_Technique
Liu, Q., Li, X., Liu, H., andGuo, Z. (2020). Multi-objective metaheuristics for discrete optimization problems: A review of the state-of-the-art. Applied Soft Computing, 93, 106382. http://doi.org/10.1016/j.asoc.2020.106382
Mann, Z. (2017). The Top Eight Misconceptions about NP-Hardness. Computer, 50, 72-79. http://doi.org/10.1109/MC.2017.146
Mantegna, R.N. (1994). Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 49(5), 4677-4683. http://doi.org/10.1103/physreve.49.4677
Marghny, M.H., Zanaty, E.A., Dukhan, W.H.,
andReyad, O. (2022). A hybrid multi-
objective optimization algorithm for software requirement problem. Alexandria Engineering Journal, 61(9), 6991-7005. http://doi.org/.1016/j.aej.2021.12.043
Mei, W., Zheng, B., You, C., andZhang, R. (2021). Intelligent Reflecting Surface Aided
Wireless Networks: From Single-Reflection
to Multi-Reflection Design and
Optimization. 110(9), 1380-1400. http://doi.org/10.1109/JPROC.2022.3170656
Naqvi, M.A., and Amin, S.H. (2021). Supplier selection and order allocation: a literature review. Journal of Data, Information and Management, 3(2), 125-139. http://doi.org/10.1007/s42488-021-00049-z
Parvez, S.M., Jahan, F., Brune, M.N., Gorman, J.F., Rahman, M.J., Carpenter, D., and Sly, P.D. (2021). Health consequences of exposure to e-waste: an updated systematic review. Lancet Planet Health, 5(12), e905-e920. http://doi.org/10.1016/S2542-5196(21)00263-1
Pradhan, T., Israni, A., andSharma, M. (2014). Solving the 0–1 Knapsack problem using Genetic Algorithm and Rough Set Theory. 1120-1125. http://doi.org/10.1109/icaccct.2014.7019272
Rai, R., Dhal, K.G., Das, A., andRay, S. (2023). An Inclusive Survey on Marine Predators Algorithm: Variants and Applications.
Archives of Computational Methods in Engineering, 30(5), 3133-3172. http://doi.org/10.1007/s11831-023-09897-x
Ribas, I., Leisten, R., andFramiñan, J.M. (2010).
Review and classification of hybrid
flow shop scheduling problems from a production system and a solutions procedure
perspective. Computers & Operations
Research, 37(8), 1439-1454. http://doi.org/10.1016/j.cor.2009.11.001
Sadiq, A.S., Dehkordi, A.A., Mirjalili, S., andPham, Q.V. (2022). Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks. Expert Systems with Applications, 203, 117395. http://doi.org/10.1016/j.eswa.2022.117395
Sanguesa, J.A., Torres-Sanz, V., Garrido, P., Martinez, F.J., andMarquez-Barja, J.M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, 4(1), 372-404. http://doi.org/10.3390/smartcities4010022
Santoso, H., Budiyanto, Y., andSetiabudy, R. (2013). Review of microgrid technology. 2013 International Conference on QiR,
Yogyakarta (pp. 127-132). IEEE. https://ieeexplore.ieee.org/document/6632550
Shaheen, A.M., Elsayed, A.M., El-Sehiemy, R.A., Kamel, S., andGhoneim, S.S.M. (2022). A modified marine predators optimization algorithm for simultaneous network reconfiguration and distributed generator allocation in distribution systems
under different loading conditions.
Engineering Optimization, 54(4), 687-708. http://doi.org/10.1080/0305215X.2021.189779
Sharma, D., Jalil, M.F., Ansari, M.S., andBansal, R.C. (2023). A review of PV array reconfiguration techniques for maximum power extraction under partial shading conditions. Optik, 275, 170559. http://doi.org/10.1016/j.ijleo.2023.170559
Smanchat, S., and Viriyapant, K. (2015). Taxonomies
of workflow scheduling problem and
techniques in the cloud. Future
Generation Computer Systems, 52, 1-12. http://doi.org/10.1016/j.future.2015.04.019
Sowmya, R., and Sankaranarayanan, V. (2022a). Optimal Scheduling of Electric Vehicle Charging at Geographically Dispersed Charging Stations with Multiple Charging Piles. International Journal of Intelligent Transportation
Systems Research, 20(3), 672-695. http://doi.org/10.1007/s13177-022-00316-2
Sowmya, R., and Sankaranarayanan, V. (2022b). Optimal vehicle-to-grid and grid-to-vehicle
scheduling strategy with uncertainty management using improved marine
predator algorithm. Computers and
Electrical Engineering, 100, 107949. http://doi.org/10.1016/j.compeleceng.2022.107949
Su, Y., Gao, H., andZhang, S. (2022). Hybrid Resource Allocation Scheme in Secure Intelligent Reflecting Surface-Assisted IoT KSII Transactions on Internet and Information Systems, 16(11), 3256-3274. http://doi.org/10.3837/tiis.2022.10.003
Sulaiman, M.H., and Mustaffa, Z. (2022a). Optimal placement and sizing of FACTS devices for optimal power flow using
metaheuristic optimizers. Results in
Control and Optimization, 8,100145. http://doi.org/10.1016/j.rico.2022.100145
Sulaiman, M.H., and Mustaffa, Z. (2022b).
Optimal placement and sizing of
FACTS devices for optimal power flow
using metaheuristic optimizers Results in
Control and Optimization, 8, 100145. http://doi.org/10.1016/j.rico.2022.100145
Ullah, H., and Parveen, S. (2011). Review on Job-Shop and Flow-Shop Scheduling Using. Journal of Mechanical Engineering, 41(2), 130-146. http://doi.org/10.3329/jme.v41i2.7508
Vijayalakshmi, V.J., Arumugam, P., Ananthi Christy, A., andBrindha, R. (2022). Simultaneous allocation of EV charging stations and renewable energy sources: An Elite RERNN-m2MPA
approach. International Journal of
Energy Research, 46(7), 9020-9040. http://doi.org/10.1002/er.7780
Wu, D.W., and Wang, R.Z. (2006). Combined cooling, heating and power: A review. Progress in Energy and Combustion Science, 32(5), 459-495. https://doi.org/10.1016/j.pecs.2006.02.001
Younesi, S., Ahmadi, B., Ceylan, O., andOzdemir,
A. (2021). Energy Loss Minimization with Parallel Implementation of Marine Predators Algorithm. 2021 13th International Conference on Electrical and Electronics Engineering, ELECO 2021 (pp. 67-72). IEEE. https://ieeexplore.ieee.org/document/9677829.
Zellagui, M., Belbachir, N., Settoul, S., and
El-Bayeh, C.Z. (2022). Smart and Power
Grid Systems - Design Challenges and Paradigms. River Publishers. http://doi.org/ 10.1201/9781003339557-4